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Abstract

This paper presents an analysis of the propagation of a penny-shaped hydraulic fracture in an impermeable elastic

rock. The fracture is driven by an incompressible Newtonian fluid injected from a source at the center of the fracture.

The fluid flow is modeled according to lubrication theory, while the elastic response is governed by a singular integral

equation relating the crack opening and the fluid pressure. It is shown that the scaled equations contain only one

parameter, a dimensionless toughness, which controls the regimes of fracture propagation. Asymptotic solutions for

zero and large dimensionless toughness are constructed. Finally, the regimes of fracture propagation are analyzed by

matching the asymptotic solutions with results of a numerical algorithm applicable to arbitrary toughness.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This paper deals with hydraulic fracturing, a technique mainly used in the petroleum industry to enhance

the recovery of oil and gas from underground hydrocarbon reservoirs. Other applications include (but are

not limited to) underground disposal of liquid toxic waste, determination of in situ stresses in rock, and

creation of geothermal energy reservoirs, see the review by Mendelsohn (1984).

Hydraulic fracturing consists of injecting a viscous fluid into a well under high pressure to initiate and

propagate a fracture. The design of a treatment relies on the ability to predict the opening and the size of

the fracture as well as the pressure of the fracturing fluid, as a function of the properties of the rock and the

fluid. However, in view of the great uncertainty in the in situ conditions, it is of particular importance to
identify the key dimensionless parameters and to understand the dependence of the hydraulic fracturing

process on these parameters. In that respect, the availability of solutions for idealized situations is especially

valuable. The construction of such solutions, for the particular case of a penny-shaped fluid-driven fracture

in an elastic medium, is one of the topics of this paper.

International Journal of Solids and Structures 39 (2002) 6311–6337

www.elsevier.com/locate/ijsolstr

* Corresponding author. Tel.: +1-612-625-3043; fax: +1-612-626-7750.

E-mail addresses: detou001@umn.edu, detou001@tc.umn.edu (E. Detournay).

0020-7683/02/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

PII: S0020-7683 (02 )00492-4

mail to: detou001@umn.edu,


Since the pioneering work by Khristianovic and Zheltov (1955), there have been numerous contributions

on the modeling of fluid-driven fractures. The early efforts naturally focused on analytical solutions for frac-

tures of simple geometry, either straight in plane strain or penny-shaped (Khristianovic and Zheltov, 1955;

Barenblatt, 1956; Perkins and Kern, 1961; Geertsma and de Klerk, 1969; Nordgren, 1972; Ab�ee et al., 1976;
Geertsma and Haafkens, 1979; Advani et al., 1987). All these solutions are approximate, however, as they

contain strong assumptions about either the opening or the pressure field. Behind such simplifications lies the

difficulty of solving the coupled non-linear integro-differential equations that govern the problem in question.

In recent years, the limitations of analytical models have shifted the focus of research towards the de-

velopment of numerical algorithms to model the three-dimensional propagation of hydraulic fractures in

layered strata characterized by different mechanical properties and/or in situ stresses (Clifton and Abou-

Sayed, 1981; Advani et al., 1990; Sousa et al., 1993; Shah et al., 1997; Peirce and Siebrits, 2001; Siebrits and

Peirce, 2002). Devising an algorithm that can robustly and accurately model such a complicated process is
by no means a simple task. Indeed, the algorithm has to cope with propagation of a fracture, fluid flow

within the fracture and, in general, exchange of fluid between the fracture and the surrounding rock. In fact,

a recent comparative study of many available hydraulic fracture simulators (Warpinski et al., 1993) shows

significant differences between their predictions, with the fracture size varying by as much as a factor of

three. The problem is compounded by the lack of exact solutions for a propagating penny-shaped hydraulic

fracture to benchmark the numerical programs.

The first objective of this research is to construct rigorous solutions for the problem of a penny-shaped

fluid-driven fracture, with a clear statement of their range of applicability. The other objective arises from a
longstanding debate on the relevance of the rock toughness. This question is of fundamental importance for

numerical modeling. If toughness is relevant, the shape of the fracture must be determined by tracking the

fracture tip; if not, the fracture shape can be identified by the fluid front, which is much easier to follow than

the fracture edge. There exist different points of view on this matter. For example, Geertsma and de Klerk

(1969) argued that the toughness is irrelevant whenever the fracture is large enough, but Ab�ee et al. (1976,

1979) came to the opposite conclusion from an analysis that distinguishes the fluid front from the crack edge.

An entirely different approach to the issue of toughness invokes an argument based on the ratio of the

energy dissipated in the rock to create new fracture surfaces to the energy dissipated in the fluid by viscous
flow (Detournay, 1999; Carbonell et al., 1999; Garagash, 2000). According to this argument, the influence

of toughness can be neglected if this energy ratio is small. For a hydraulic fracture in plane strain, this

criterion yields a critical value for a dimensionless toughness below which toughness is negligible (Carbonell

et al., 1999). Interestingly, this criterion does not depend on the confining stress, in contrast to those

proposed by Geertsma and de Klerk (1969) and Ab�ee et al. (1976, 1979).

The energy argument suggests that there must be three regimes of the propagation: viscosity-dominated

(in which the toughness may be neglected), toughness-dominated (in which the viscosity may be neglected),

and transient (in which both parameters are important). The second objective of this research is to analyze
the regimes of propagation of a penny-shaped hydraulic fracture in an impermeable elastic rock.

The structure of the paper is as follows. The problem formulation is described in Section 2. In Section 3,

we discuss the scaling of the governing equations and we introduce the viscosity- and toughness-dominated

regimes of fracture propagation. Sections 4 and 5 present asymptotic solutions for zero toughness and large

toughness, respectively. The regimes of fracture propagation are analyzed in Section 6, and concluding

remarks are given in Section 7.

2. Problem formulation

Consider an axisymmetric hydraulic fracture propagating in an infinite impermeable elastic medium
characterized by Young�s modulus E, Poisson�s ratio m, and toughness KIc (see Fig. 1). An incompressible
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Newtonian fluid with viscosity l is injected at the center of the fracture at constant volumetric rate Q0. We

seek to determine the crack aperture wðr; tÞ as a function of the radial coordinate r and time t, the net

pressure pðr; tÞ (the difference between the fluid pressure pf and the far-field compressive stress r0 per-

pendicular to the fracture plane), and the fracture radius RðtÞ.
Several assumptions are introduced to simplify this problem:

1. the fluid is injected from a point source (i.e., the wellbore radius is negligible compared to the fracture

radius);

2. the fluid reaches the tip of the crack (i.e., the lag between the fracture tip and the fluid front is very small

compared to the fracture radius);

3. the fracture propagates continuously in mobile equilibrium;

4. lubrication theory is applicable.

The legitimacy of Assumption 2 is based on an analysis of the near tip region of a fluid-driven fracture

(Garagash and Detournay, 2000), which indicates that the lag k reaches a maximum value k0 � lVE2r�3
0

with V denoting the tip velocity, when KIc ¼ 0. For typical values of the parameters, k0 is of the order of

10�1 m and thus generally very small compared to the fracture radius, which can reach dimension of order

of 102 m. Furthermore, the actual lag k could be very small compared to k0, if KIc > 0. By neglecting the lag,

the solution does not depend on the far-field stress r0, which enters the formulation only as a reference

stress.
The complete formulation of this problem relies on equations from elasticity and lubrication theories, on

a fracture propagation criterion from linear elastic fracture mechanics, and on boundary conditions at the

inlet and at the tip of the fracture.

The two coupled equations involving the fracture opening wðr; tÞ and net pressure pðr; tÞ consist of a non-
local integral relation from elasticity (Sneddon, 1951)

w ¼ 8R
pE0

Z 1

r=R

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � ðr=RÞ2

q Z 1

0

xpðxnR; tÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dxdn ð1Þ

and a non-linear differential equation from lubrication theory (Batchelor, 1967)

ow
ot

¼ 1

12l
1

r
o

or
rw3 op

or

� �
ð2Þ

Eq. (2), which is usually referred to as Reynolds equation, is obtained by eliminating the radial flow rate

qðr; tÞ between the fluid mass balance

ow
ot

þ 1

r
o

or
ðrqÞ ¼ 0 ð3Þ

Fig. 1. A penny-shaped hydraulic fracture.
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and Poiseuille law

q ¼ � w3

12l
op
or

ð4Þ

In the above, E0 is the plane strain modulus, which can be expressed in terms of E and m as E0 ¼ E=ð1� m2Þ.
According to linear elastic fracture mechanics (Kanninen and Popelar, 1985), the fracture propagation

criterion takes the form

KI ¼ KIc ð5Þ

where KI denotes the mode I stress intensity factor and KIc the material toughness. For a penny-shaped

crack, KI can be expressed as (Rice, 1968)

KI ¼
2ffiffiffiffiffiffi
pR

p
Z R

0

pðr; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

p rdr ð6Þ

Condition (5) always applies, under Assumption 3 of continuous mobile equilibrium. The right-hand side of

(6) is thus independent on time. The propagation condition (5) can equivalently be imposed as an asymp-

totic condition on the crack opening at the tip r ¼ R (Rice, 1968)

w ’ 4

ffiffiffi
2

p

r
KIc

E0

ffiffiffiffiffiffiffiffiffiffiffi
R� r

p
; 1� r

R

 1 ð7Þ

The fracture tip is characterized by zero fracture opening

w ¼ 0; r ¼ R ð8Þ

and a no-flow condition q ¼ 0, which can be expressed in terms of opening and pressure by means of

Poiseuille law (4) as

w3 op
or

¼ 0; r ¼ R ð9Þ

Injection of fluid from the borehole is idealized by a source at the center of the fracture. Based on mass

balance considerations, the source condition can be expressed as

2p lim
r!0

rq ¼ Q0 ð10Þ

It follows from (10) that q � 1=r near the source. According to Poiseuille law (4), the fluid pressure is thus

logarithmically singular at the source, p � � ln r. The source can alternatively be taken into account by the

global mass balance

Q0t ¼ 2p
Z R

0

wrdr ð11Þ

This equation can also be obtained by integrating the local mass balance (3) and taking into account both

boundary conditions (9) and (10).

The set consisting of the elasticity equation (1), Reynolds equation (2), the propagation criterion (5) or

(7), the inlet condition (10) or (11) and the tip conditions (8) and (9) forms a complete system for deter-

mining wðr; tÞ, pðr; tÞ, and RðtÞ with 06 r6RðtÞ, tP t0, starting from known values of these quantities at an
initial time t0. However, in accordance with Assumptions 1 and 2, we are looking for solutions for which the

influence of the initial conditions has vanished.
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3. Scaling

3.1. General form

Scaling of this problem hinges on defining dimensionless crack opening X, net pressure P, and fracture

radius c as

wðr; tÞ ¼ eðtÞLðtÞXðq;PðtÞÞ ð12Þ

pðr; tÞ ¼ eðtÞE0Pðq;PðtÞÞ ð13Þ

RðtÞ ¼ LðtÞcðPðtÞÞ ð14Þ
With these definitions, we have introduced the dimensionless radial coordinate q ¼ r=RðtÞ (06 q6 1), a

small number eðtÞ, a length scale LðtÞ of the same order of magnitude as the fracture radius RðtÞ, and a

dimensionless parameter PðtÞ, which depends monotonically on t. The form of the scaling (12)–(14) is
motivated by elementary elasticity considerations, by noting that the average aperture scaled by the fracture

radius is of the same order as the average net pressure scaled by the elastic modulus. Explicit forms of the

parameters eðtÞ, LðtÞ, and PðtÞ are given below for both the viscosity and the toughness scalings.

First, it is convenient to define a viscosity l0 and a toughness K 0, respectively proportional to l and KIc,

to avoid carrying numerical factors in the equations

l0 ¼ 12l; K 0 ¼ 4
2

p

� �1=2

KIc ð15Þ

The main equations are transformed as follows, under the scaling (12)–(14).

• Elasticity equation

X ¼ 8

p
c
Z 1

q

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � q2

q Z 1

0

xPðxnÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dxdn ð16Þ

• Lubrication equation. The left-hand side ow=ot of the lubrication equation (2) can now be written as

ow
ot

¼ _eeL
�

þ e _LL
�
X � e _LLq

oX
oq

þ eL _PP
oX
oP

�
� q

c
dc
dP

oX
oq

�
ð17Þ

while the right-hand side is transformed into

1

l0
1

r
o

or
rw3 op

or

� �
¼ e4E0L

l0c2
1

q
o

or
qX3 oP

oq

� �
ð18Þ

After multiplying both sides by t=eL, we obtain a new form of the lubrication equation

_eet
e

 
þ

_LLt
L

!
X �

_LLt
L

q
oX
oq

þ _PPt
oX
oP

�
� q

c
dc
dP

oX
oq

�
¼ e3E0t

l0
1

c2q
o

oq
qX3 oP

oq

� �
ð19Þ

• Global mass balance

2peL3c2
Z 1

0

Xqdq ¼ Q0t ð20Þ

• Propagation criterion. The propagation criterion (5) can either be expressed in the form of the crack

opening tip asymptote following (7)
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X ¼ K 0

eE0L1=2
c1=2ð1� qÞ1=2; 1� q 
 1 ð21Þ

or as an integral constraint on the net pressure according to (6)

K 0

eE0L1=2
¼ 27=2

p
c1=2

Z 1

0

Pffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p qdq ð22Þ

3.2. Viscosity and toughness scalings

We now introduce viscosity and toughness scalings, respectively denoted by subscripts m and k. Al-

though there is some freedom in defining the scaling parameters e and L, the actual choice is restricted by

the requirement that the dimensionless quantities (X, P, and c) should be Oð1Þ. Two equations are used to
identify e and L. The first equation expresses global mass conservation and the requirement that the average

opening X is Oð1Þ

eL3 ¼ Q0t ð23Þ

The second equation depends on the particular scaling used. For the viscosity scaling, the dimensionless

group containing the viscosity in the lubrication equation (19) is set to one

l0

e3E0t
¼ 1 ð24Þ

while for the toughness scaling, it is the dimensionless group with the toughness in the propagation criterion
(21) or (22), which is set to one

K 0

eE0L1=2
¼ 1 ð25Þ

Note that in view of (23), (20) simplifies to yield a relationship between the dimensionless opening X and the

radius c

2pc2
Z 1

0

Xqdq ¼ 1 ð26Þ

Consider now the viscosity scaling. The small parameter em and the lengthscale Lm are solution of (23) and

(24)

em ¼ l0

E0t

� �1=3

; Lm ¼ E0Q3
0t

4

l0

� �1=9

ð27Þ

Since both em and Lm are power laws of time, it follows that

_eemt
em

¼ � 1

3
;

_LLmt
Lm

¼ 4

9
ð28Þ

It is also natural to introduce the dimensionless toughness KðtÞ

K ¼ K 0 t2

l05Q3
0E013

� �1=18

ð29Þ

so that the propagation criterion in terms of either the opening tip asymptote (21) or the integral pressure

constraint (22) can be written as
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Xm ¼ Kc1=2m ð1� qÞ1=2; 1� q 
 1 ð30Þ

K ¼ 27=2c1=2m

p

Z 1

0

Pmffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p qdq ð31Þ

In the viscosity scaling, the toughness K is the only parameter appearing in the set of the governing

equations. Hence,K can be identified with Pm (the evolution parameterP for the viscosity scaling) and the

solution in this scaling will be in the form Xmðq;KÞ, Pmðq;KÞ, and cmðKÞ. Note that K is a small number

in the viscosity-dominated regime.

Next, we introduce the toughness scaling; ek and Lk are now determined from (23) and (25)

ek ¼
K 06

E06Q0t

� �1=5

; Lk ¼
Q2

0E
02t2

K 02

� �1=5

ð32Þ

These expressions imply that

_eekt
ek

¼ � 1

5
;

_LLkt
Lk

¼ 2

5
ð33Þ

A dimensionless viscosity MðtÞ is logically defined as

M ¼ l0 Q3
0E

013

K 018t2

� �1=5

ð34Þ

so that the lubrication equation (19) can be rewritten as

M
1

5
Xk

�
� 2

5
q
oXk

oq

�
� 2

5
M2 oXk

oM

�
� q

ck

dck
dM

oXk

oq

�
¼ 1

c2kq
o

oq
qX3

k

oPk

oq

� �
ð35Þ

In the above equation, we have already identified the viscosity M as the evolution parameter Pk; hence, the
solution in the toughness scaling will be in the form Xkðq;MÞ, Pkðq;MÞ, and ckðMÞ. The toughness-

dominated regime corresponds to small values of the viscosity M.

However, the dimensionless viscosity M and toughness K are simply related by

M ¼ K�18=5 ð36Þ

The transition between viscosity- and toughness-dominated regimes can thus be understood in terms of

only one parameter, which we select to be K. Also, the small viscosity solution can equivalently be referred

to as the large toughness solution. It is also interesting to note the relationships between the expressions for
the small parameter e and the lengthscale L in the two scalings

em
ek

¼ K�6=5;
Lm

Lk
¼ K2=5 ð37Þ

It then follows that the solution F ¼ fX;P; cg can be easily converted from one scaling to the other ac-

cording to

Xm

Xk
¼ K4=5;

Pm

Pk
¼ K6=5;

cm
ck

¼ K�2=5 ð38Þ

The above analysis also indicates that, for the two limit cases K ¼ 0 and K ¼ 1 (M ¼ 0), the solution is

self-similar and thus does not depend on initial conditions. For any other value ofK, the solution is not self-
similar and is a function of K. In fact, since K is a monotonically increasing function of time, the solution

necessarily evolves from the viscosity-dominated regime (K 
 1) towards the toughness-dominated regime
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(K � 1). If K is the controlling parameter, the zero-toughness solution (K ¼ 0) provides the initial con-

ditions from which the solution will evolve.

4. Zero-toughness solution

4.1. Problem formulation

We now turn towards the construction of the zero-toughness self-similar solution Fm0 ¼ fXm0;Pm0; cm0g
where

Xm0ðqÞ ¼ Xmðq; 0Þ; Pm0ðqÞ ¼ Pmðq; 0Þ; cm0 ¼ cmð0Þ
It is actually convenient to rescale the opening according to

Xm0ðqÞ ¼
Xm0ðqÞ

cm0
ð39Þ

which allows, as shown below, to first solve for Fm0 ¼ fXm0;Pm0g and then compute cm0. Following Barr
(1991), it is also advantageous to rewrite the conventional elasticity equation (1) by reducing its right-hand

side to a single integral (see Appendix A for details)

wðr; tÞ ¼ 8R
pE0

Z 1

0

Gðr=R; nÞpðnR; tÞndn ð40Þ

where the kernel G is given in closed form as

Gðq; nÞ ¼

1

q
F arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

1� n2

s
;
n2

q2

 !
; q > n

1

n
F arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

1� q2

s
;
q2

n2

0
@

1
A; q < n

8>>>>><
>>>>>:

ð41Þ

with F denoting the incomplete elliptic integral of the first kind (Abramowitz and Stegun, 1964).

Thus the system of equations for the limit case K ¼ 0 can be written in terms of Xm0ðqÞ and Pm0ðqÞ as
follows:

• Elasticity equation:

Xm0 ¼
8

p

Z 1

0

Gðq; nÞPm0ðnÞndn ð42Þ

with the kernel G given by (41).

• Lubrication equation:Z 1

q
Xm0ndn þ 4

9
q2Xm0 ¼ �qX

3

m0

dPm0

dq
ð43Þ

This form of the lubrication equation is obtained by integrating the lubrication equation (19) from q to 1
with the weight n and making use of the tip conditions (45).

• Propagation criterion:Z 1

0

Pm0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p qdq ¼ 0 ð44Þ
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• Conditions at the tip (q ¼ 1):

Xm0 ¼ 0; X
3

m0

dPm0

dq
¼ 0 ð45Þ

• Global mass balance:

cm0 ¼ 2p
Z 1

0

Xm0qdq

� ��1=3

ð46Þ

The first four equations (42)–(45) are complete with respect to Xm0ðqÞ and Pm0ðqÞ. The dimensionless radius

cm0 can be computed from (46) once the function Xm0ðqÞ has been identified; this justifies the rescaling

cm0Xm0 ¼ Xm0.

4.2. Tip and inlet asymptotic behavior

The assumption that the fluid front coincides with the crack tip results in a pressure singularity at the tip.

This singularity must be properly accounted for in order to obtain an accurate solution of the problem. It

was first shown by Spence and Sharp (1985) that the opening behaves near the tip as ðR� rÞ2=3 and the net

pressure as ðR� rÞ�1=3
, under the assumptions of zero lag (k ¼ 0) and zero toughness (K 0 ¼ 0). These

asymptotes were also found as an exact solution to the problem of a semi-infinite hydraulic frac-

ture propagating in an impermeable rock with k ¼ 0 and K 0 ¼ 0 (Desroches et al., 1994). For a Newtonian
fluid, the tip asymptotes for the crack opening w and the net pressure p are

w ¼ 21=3 � 35=6
l0 _RRR2

E0

 !1=3

n̂n2=3 þOðn̂n5=3Þ; p ¼ � 1

62=3
l0 _RRE02

R

 !1=3

n̂n�1=3 þOðn̂n2=3Þ ð47Þ

where n̂n ¼ 1� r=R 
 1. Thus, the pressure is singular both at the inlet and at the tip. In dimensionless

form, these asymptotes are rewritten as follows.

• Inlet asymptote. The pressure is logarithmically singular at the source

Pm0 � � ln q; q 
 1 ð48Þ

• Tip asymptote. The tip asymptotes for Xm0 and Pm0 are deduced by rescaling the singular solution (47) in
terms of Xm0, Pm0, and q

Xm0 ’ 2� 31=6ð1� qÞ2=3; Pm0 ’ �3�4=3ð1� qÞ�1=3
; 1� q 
 1 ð49Þ

It is interesting to note that the rewriting of the asymptotes (47) in terms of Xm0 is only possible because of

the rescaling (39).

4.3. Method of solution

The method for constructing a solution of the formulated problem is inspired by, although different

from, the scheme described by Spence and Sharp (1985) and the approach used by Carbonell et al. (1999) to

find the zero-toughness solution for a plane strain fracture.

The solution is sought in terms of series expansions. Since the non-linearity of this problem is only
introduced by the lubrication equation, the superposition principle can be applied to solve the elasticity

equation, taking also into account the boundary conditions and the propagation criterion. Here, the
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solution is sought as a sum of a general solution F
� ¼ fX�

;P�g having the expected behavior (49) at the

fracture tip, and a particular solution F
�� ¼ fX��

;P��g having the correct singularity (48) at the source

Fm0 ¼ F
�ðqÞ þ BF

��ðqÞ ð50Þ
where B is an as yet unknown coefficient. Furthermore, the general solution is represented in terms of

infinite series of base functions P�
i ðqÞ and X

�
i ðqÞ

Pm0 ¼
X1
i¼1

AiP
�
i ðqÞ þ BP��ðqÞ ð51Þ

Xm0 ¼
X1
i¼1

CiX
�
i ðqÞ þ BX

��ðqÞ ð52Þ

where Ai and Ci are also unknown coefficients.

Both the general solution F
�
and the particular solution F

��
have to satisfy the elasticity equation (42).

A novelty of the approach described here is that application of (42) differs for F
�
and F

��
. While X

��
and

P�� exactly satisfy the elasticity equation (42), the pressure and opening base functions X
�
i and P�

i are

chosen independently. Instead, the elasticity equation (42) provides a relationship between the coefficients

of the series for opening and for pressure, fAig and fCig. Further, an approximate solution F
�ðnP;nXÞ

is

sought by considering the first nP and nX terms of the series expansions (51) and (52) for the pressure and

opening, respectively.

4.4. Particular solution

A particular solution of the form P�� ¼ � ln q þ D satisfies the inlet asymptotic behavior, and allows an

easy determination of the constant D from the zero-toughness condition (44). Thus,

P�� ¼ � ln q þ ln 2� 1 ð53Þ
Substituting the above expression into the elasticity equation (42) yields the corresponding opening X

��ðqÞ

X
�� ¼ 8

p
ð1� q2Þ1=2 � 8

p
q arccos q ð54Þ

Since the pressure P��ðqÞ satisfies the zero-toughness condition and is finite at the tip, X
��ðqÞ must behave

as ð1� qÞ3=2 near q ¼ 1. Indeed, the asymptotic expansion of (54) near the tip yields

X
��ðqÞ ¼ 29=2

3p
ð1� qÞ3=2 þO½ð1� qÞ5=2�; 1� q 
 1 ð55Þ

4.5. General solution

The central part of this approach is the construction of the general solution F
�ðqÞ. The set of base

functions, which must have the appropriate behavior at the tip according to (47), is chosen to be or-

thogonal. Such functions are Jacobi polynomials multiplied by the proper weights

P�
i ðqÞ ¼ �P

�
i ðqÞ þ xi ð56Þ

P
�
i ðqÞ ¼

ð1� qÞ�1=3

h1=2i�1

4

3
; 2

� �Gi�1

4

3
; 2; q

� �
ð57Þ
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X
�
i ðqÞ ¼

ð1� qÞ2=3

h1=2i�1

10

3
; 2

� �Gi�1

10

3
; 2; q

� �
ð58Þ

In the above, Giðp; q; qÞ is the Jacobi polynomial of order i defined on the interval ½0; 1�

Giðp; q; qÞ ¼
Cðqþ iÞ
Cðp þ 2iÞ

Xi

j¼0

ð � 1Þj i
j

� �
Cðp þ 2i� jÞ
Cðqþ i� jÞ qi�j ð59Þ

and hiðp; qÞ is the norm of Gi defined as (Abramowitz and Stegun, 1964)Z 1

0

ð1� qÞp�qqq�1Giðp; q; qÞGjðp; q; qÞdq ¼ hiðp; qÞdij ð60Þ

where dij is the Kronecker symbol. Hence,

hiðp; qÞ ¼
i!Cðiþ qÞCðiþ pÞCðiþ p � qþ 1Þ

ð2iþ pÞC2ð2iþ pÞ
ð61Þ

It can be easily shown that fX�
i ðqÞg and fP�

i ðqÞg are orthonormal sets of functions in the following sense 1

Z 1

0

X
�
i ðqÞX

�
j ðqÞqdq ¼ dij ð62Þ

Z 1

0

P
�
i ðqÞP

�
j ðqÞqdq ¼ dij ð63Þ

The constants xi in (56) are adjustments to the pressure base functions such that each one fulfills the
constraint (44). They are thus determined from

xi ¼
Z 1

0

P
�
i ðqÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p qdq ð64Þ

Table 1 lists the coefficients xi for i ¼ 1; . . . ; 4.
Substituting the finite series for P� and X

�
into the elasticity equation (42) eventually yields the rela-

tionship between the two sets of coefficients

CðnX;nPÞ
i ¼

XnP

j¼1

LijA
ðnX;nPÞ
j ð65Þ

where

Lij ¼
8

p

Z 1

0

X
�
i ðqÞ

Z 1

0

Gðq; nÞP�
j ðnÞndn

� �
qdq ð66Þ

Appendix B provides some details for the accurate evaluation of the elements Lij, in view of the weak

singularity of the kernel G. Note that the Lij have to be calculated only once, as they do not depend on the
parameters nX and nP. Numerical results indicate that for the given ith mode of pressure, the first (iþ 1)

terms of the opening series provide a fairly good approximation of the corresponding integral. Thus, we can

set nX ¼ nP þ 1 ¼ nþ 1. The computed coefficients Lij are listed in Table 2 for n ¼ 4.

1 Note that functions P�
i are not orthogonal. It has been verified that orthogonalization of this set of functions does not improve the

convergence and the accuracy of the solution.
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4.6. Lubrication equation

The coefficients AðnÞ
i and BðnÞ are finally determined from the lubrication equation by means of the least

squares method. The truncated series of base functions for the opening and the pressure are substituted into

the lubrication equation (43). Then, the left and right hand sides of the equation are computed at a set of m
equally spaced control points (m ¼ 10 for n ¼ 1; . . . ; 4). Now, we can construct a cost function as a sum of

squares of discrepancies at the control points

DðAðnÞ
1 ; . . . ;AðnÞ

n ;BðnÞÞ ¼
Xm
i¼1

Nrðqi;A
ðnÞ
1 ; . . . ;AðnÞ

n ;BðnÞÞ
Nlðqi;A

ðnÞ
1 ; . . . ;AðnÞ

n ;BðnÞÞ

"
� 1

#2
ð67Þ

where q1 ¼ 0 and qm ¼ 1. The expressions for the left and right hand sides of the lubrication equation Nl

and Nr, respectively, are given in Appendix C.

The unknown coefficients AðnÞ
i and BðnÞ are to be computed by minimizing the cost function D. The

procedure starts from n ¼ 1. Then, the solution from the current n is used as an initial guess for the next

value n ¼ nþ 1. It is interesting to note that the dependence of the coefficients AðnÞ
i and BðnÞ upon n stems

only from the non-linearity of the lubrication equation.

4.7. Results

The coefficients BðnÞ, AðnÞ
i , and CðnÞ

i are listed in Table 3 for n ¼ 1; . . . ; 4, while the opening X
ðnÞ
m0ð0Þ at the

fracture inlet and the constant cðnÞm0 are given in Table 4, also for n ¼ 1; . . . ; 4. The opening X
ðnÞ
m0 and net

pressure PðnÞ
m0 are plotted in Fig. 2 for n ¼ 4. (The pressure plot is truncated at both ends because of the

singularity at the tip and at the source.) However, the first-order solution n ¼ 1 is already an excellent

approximation, as it could hardly be distinguished from the solution n ¼ 4 if it were plotted in Fig. 2. This

can be also confirmed by examining the convergence of the solution in Table 4. These results show the
robustness of the calculation scheme and the very rapid convergence of the solution with n. The explicit

expressions for the opening estimate X
ð1Þ
m0ðqÞ and the net pressure estimate Pð1Þ

m0ðqÞ are given below

X
ð1Þ
m0 ¼

ffiffiffiffiffi
70

p

3
Cð1Þ

1

"
þ 4

ffiffiffi
5

p

9
Cð1Þ

2 ð13q � 6Þ
#
ð1� qÞ2=3 þ Bð1Þ 8

p
ð1

�
� qÞ1=2 � 8

p
q arccos q

�
ð68Þ

Pð1Þ
m0 ¼ Að1Þ

1 x1

"
� 2

3ð1� qÞ1=3

#
� Bð1Þ ln

q
2

�
þ 1
�

ð69Þ

Table 2

Coefficients Lij for n ¼ 4

Lij 1 2 3 4

1 1.912 2.546 0.8201 0.6290

2 0.1982 )0.03698 0.8135 0.1219

3 0.003556 )0.08572 )0.04883 0.4586

4 0.003472 )0.007786 )0.08325 )0.02817
5 0.0009090 )0.005216 )0.006443 )0.07449

Table 1

Values of constants xi for i ¼ 1; . . . ; 4

x1 x2 x3 x4

2.479 0.7615 0.6329 0.5275
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Table 3

Coefficients BðnÞ, AðnÞ
i , and CðnÞ

i for n ¼ 1; . . . ; 4

n 1 2 3 4

BðnÞ � 102 9.269 9.011 9.389 9.320

AðnÞ
1 � 101 3.581 3.499 3.409 3.386

AðnÞ
2 � 103 – 5.442 9.805 11.33

AðnÞ
3 � 103 – – 2.130 2.358

AðnÞ
4 � 104 – – – 1.646

CðnÞ
1 � 101 6.846 6.828 6.784 6.783

CðnÞ
2 � 102 7.098 6.916 6.894 6.864

CðnÞ
3 � 104 – 7.777 2.676 1.930

CðnÞ
4 � 104 – – 9.299 8.867

CðnÞ
5 � 104 – – – 2.212

Table 4

Opening at the source X
ðnÞ
m0ð0Þ and radius cðnÞm0 for n ¼ 1; . . . ; 4

n X
ðnÞ
m0ð0Þ cðnÞm0

1 1.722 6:955� 10�1

2 1.729 6:965� 10�1

3 1.710 6:974� 10�1

4 1.713 6:976� 10�1

Fig. 2. Crack opening X
ðnÞ
m0 and net pressure PðnÞ

m0ðqÞ for n ¼ 4.
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The very small number of terms in the expansions that are needed to capture the solution accurately is

largely due to the proper account of the singular behavior of the solution at the source and at the tip.

5. Large-toughness asymptotic solution

5.1. Problem formulation

The large toughness solution corresponds to the situation when the dimensionless viscosity M 
 1. The

toughness scaling is appropriate for this case. The system of equations for the toughness-dominated regime

can be rewritten in terms of Pk, Xk, and ck as follows:

• Elasticity equation:

Xk ¼
8ck
p

Z 1

q

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � q2

q Z 1

0

xPkðxn; tÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dxdn ð70Þ

• Lubrication equation:

M

Z 1

q
Xkndn

�
þ 2

5
q2Xk

�
þOðM2Þ ¼ � q

c2k
X3

k

oPk

oq
ð71Þ

which is deduced from the lubrication equation (35), after integrating both sides of the equation from q to 1

with the weight n. Also, the term OðM2Þ in the left-hand side of (71) has not be written explicitly, as we only

seek to determine the solution to order of M.

• Propagation criterion:

c�1=2
k ¼ 8

ffiffiffi
2

p

p

Z 1

0

Pkffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p qdq ð72Þ

• Global mass balance:

2pc2k

Z 1

0

Xkqdq ¼ 1 ð73Þ

Note that the pressure near the tip is now logarithmically singular. This result can be directly verified by

substituting the square-root opening asymptote (7) in the Poiseuille equation (4).

5.2. First-order asymptotic solution

We now seek a solutionFk ¼ fXk;Pk; ckg of the system of equations (70)–(73) to order ofM in the form
of a regular asymptotic expansion, following the approach used by Garagash (2000) for the equivalent

plane strain problem

FkðMÞ ¼ Fk0 þMFk1 þOðM2Þ ð74Þ

where Fk0 ¼ fXk0;Pk0; ck0g and Fk1 ¼ fXk1;Pk1; ck1g. Substituting the expansions (74) into (70)–(73) and
collecting terms Oð1Þ and OðMÞ results in the following sets of equations for the zero- and first-order terms

in the expansions (74).
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• OðM0Þ:

Xk0 ¼
8ck0
p

Z 1

q

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � q2

q Z 1

0

xPk0ðxnÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dxdn ð75Þ

dPk0

dq
¼ 0 ð76Þ

c�1=2
k0 ¼ 8

ffiffiffi
2

p

p

Z 1

0

Pk0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p qdq ð77Þ

ck0 ¼ x�1=2
k0 ð78Þ

• OðM1Þ:

Xk1 ¼
8ck1
p

Z 1

q

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � q2

q Z 1

0

xPk0ðxnÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dxdn þ 8ck0
p

Z 1

q

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � q2

q Z 1

0

xPk1ðxnÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dxdn ð79Þ

Z 1

q
Xk0ndn þ 2

5
q2Xk0 ¼ � q

c2k0
X3

k0

dPk1

dq
ð80Þ

ck1 ¼ � 16
ffiffiffi
2

p

p
c3=2k0

Z 1

0

Pk1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p qdq ð81Þ

ck1 ¼ � 1

2
xk1c

3
k0 ð82Þ

where

xki ¼ 2p
Z 1

0

Xkiqdq ð83Þ

The zero-order solution Fk0 corresponds to an inviscid fluid (M ¼ 0). As expected, (76) implies that the

pressure is spatially uniform. The solution Fk0 is given in closed form by

Pk0 ¼
p
8

p
12

� �1=5
’ 0:3004 ð84Þ

Xk0 ¼
3

8p

� �1=5

1
�

� q2
�1=2 ð85Þ

ck0 ¼
3

p
ffiffiffi
2

p
� �2=5

’ 0:8546 ð86Þ

Consider next the first-order termFk1. Substituting Xk0 and ck0 into (80) yields a simple equation for Pk1ðqÞ
dPk1

dq
¼ �Ak

1

3q

�
þ 2

5

q
1� q2

�
ð87Þ
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which can be integrated to give an explicit expression for Pk1ðqÞ up to an unknown constant P�
k1

Pk1 ¼ P�
k1 � Ak

1

3
ln q

�
� 1

5
lnð1� q2Þ

�
ð88Þ

with

Ak ¼
p

8Pk0

� �2

’ 1:709

Substituting Pk0 and Pk1 into (79) yields Xk1ðqÞ (see Appendix D for details)

Xk1 ¼ Bk 1
�

� q2
�1=2 � 8

3p
Akck0 ln 2

��
� 4

5

�
ð1� q2Þ1=2 þ q arccos q � 6

5
I�ðqÞ

�
ð89Þ

with

Bk ¼
8

p
ðck1Pk0 þ ck0P

�
k1Þ

Fig. 3. Crack opening and net pressure in the toughness-dominated regime.
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The function I�ðqÞ defined as

I�ðqÞ ¼
Z 1

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

n2 � q2

s
arcsin ndn ð90Þ

has to be evaluated numerically. Although the opening is not known in closed form, the corresponding

volume xk1 can nonetheless be integrated analytically (see Appendix D for details)

xk1 ¼
2p
3
Bk �

16

9
Akck0 ln 2

�
� 14

15

�
ð91Þ

The two unknowns P�
k1 and ck1 are finally determined by solving (81) and (82)

ck1 ¼ � 544

75p2
’ �0:7349 ð92Þ

P�
k1 ¼

24=5ð32þ 75 ln 2Þ
75� 33=5p2=5

’ 0:6380 ð93Þ

It then follows that

Bk ’ 0:8264

5.3. Results

Fig. 3 shows the solution for different values ofM. An interesting result pertains to the singular nature of

the first-order pressure solution (88) near the tip and the inlet. The logarithmic singularity near the tip

results from neglecting the fluid lag, while the logarithmic singularity near the inlet is caused by neglecting

the wellbore radius. The zero-order solution does not capture these singularities.

6. Regimes of fracture propagation

The solution for a penny-shaped hydraulic fracture depends only on one parameter, which we select to

be the toughness K. In principle, we can define three regimes of propagation:

• viscosity-dominated regime (K < Km0), where the solution F can be approximated by Fm0 (the zero-

toughness solution);

• mixed-regime (Km0 < K < Kk0), where the solution depends on both the viscosity and the toughness;

• toughness-dominated regime (K > Kk0), where the solution F can be approximated by the Fk0 (the
zero-viscosity solution).

Strictly speaking, the viscosity- and toughness-dominated regimes of propagation correspond to K 
 1

and K � 1, respectively. It is possible, however, to identify the bounds Km0 and Kk0, such that K < Km0

corresponds for all practical purposes to the viscosity-dominated regime, and K > Kk0 to the toughness-

dominated regime. Pragmatically, these bounds can be assessed by considering the dependence of the

fracture radius cm on K.

Consider first the large toughness asymptotic solution (74) in terms of c in the viscosity scaling. Using the
equivalence (36) and (38) between the two scalings, we can express cm for large K as

cm ’ ck0K
�2=5 þ ck1K

�4; for K � 1 ð94Þ
It can be readily deduced from (94) that the error of approximating cm by the zero-viscosity solution

cm1 ¼ ck0K
�2=5 is less than 1% for K ¼ 3:5; thus, it is appropriate to adopt Kk0 ’ 3:5.
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Identification of the practical upper bound Km of the viscosity-dominated regime requires to compare

the zero-toughness solution with a general numerical solution. Such an approach has been successfully

applied to the analysis of the plane strain problem (Carbonell et al., 1999; Garagash, 2000). However,

unlike for the plane strain case, the solution for a penny-shaped fracture is not self-similar in all the regimes
of propagation. Thus, the radial hydraulic fracture solution must, in general, be computed numerically by

solving an evolution problem, while in the plane strain case, self-similar solutions depending on a parameter

similar to K (but which does not depend on time) can be computed independently in the form of series

expansions (Spence and Sharp, 1985).

Table 5

Parameters for tests I and II

Quantity Test I Test II

Q (m3/s) 0.053 3� 10�5

r0 (MPa) 41.4 6.86

E (GPa) 38.8 5

m 0.15 0.42

l (MPa s) 2� 10�8, 8� 10�8 10�9

r0 (m) 0.079 0.079

KIc (MPam1=2) 1 0.129, 0.194, 0.244, 0.322, 0.387, 0.463, 1.27

Fig. 4. Comparison of the opening and pressure of analytical solution and Loramec simulation given in the viscosity scaling for

K ¼ 0:15 and 1.5.
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Further analysis is based on the numerical results obtained with the code Loramec (Desroches, 2000).

This code is designed to simulate the propagation of a plane strain and a penny-shaped hydraulic fractures.

The algorithm is based on a combination of the finite difference and boundary element methods and is

made efficient through the use of a moving mesh. A description of Loramec can be found elsewhere
(Desroches and Thiercelin, 1993; Carbonell et al., 1999). We only note here that both the well radius and

the fluid lag are accounted for explicitly in Loramec.

Since Loramec is formulated in terms of dimensional variables, two sets of parameters are considered

(see Table 5). The parameters for Test I are similar to field parameters, while those for Test II correspond to

laboratory experiments. All results are further given in dimensionless form; they are computed from the

numerical solution at various stages of propagation of the fracture.

First, we compare numerical results corresponding to small and large values of the dimensionless

toughness to the asymptotic solutions derived earlier. Fig. 4 shows the opening and the pressure in the
viscosity scaling for small values ofK. It is clear that while the parameter K is small the matching between

the two solutions is very good. However, as this parameter increases the difference between the asymptotic

and numerical solutions becomes more and more evident. A similar situation is observed for large values of

toughness (see Fig. 5).

Fig. 5. Comparison of the opening and pressure of analytical solution and Loramec simulation given in the viscosity scaling for

K ¼ 2:5, 3.0 and 3.6. The solid line corresponds to the zero-order solution and the dashed line corresponds to the first-order solution.
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The boundaries of the regimes of propagation are best determined from Fig. 6 showing the dependence

of the fracture radius in the viscosity scaling, cm, on the toughness K. The numerical results suggest that

Km0 ’ 1 and Kk0 ’ 3:5 (which is consistent with the estimate based on comparing the zero- and the first-

order solution for large toughness). The transition regime appears to correspond to a remarkably small

interval of K.

The curve cmðKÞ, plotted in Fig. 6, is in principle travelled from left to right with increasing time.

Although this result could be interpreted to mean that a radial fracture starts in the viscosity-dominated
regime, it should be reminded that none of the solutions discussed here are applicable to the ‘‘early time’’ of

fracture initiation. Indeed, the well radius has been assumed negligible compared to the fracture dimension.

In fact, a radial fracture starts its existence in the toughness-dominated regime, matures in the viscosity-

dominated regime, and ages back in the toughness-dominated regime.

It is of interest to estimate the times at which transitions between regimes of propagation occur, given

realistic values of the parameters defining K. Consider Table 6 listing typical ranges of values of those

parameters. According to this table, the fracture would remain in the viscosity-dominated regime for many

years if all the parameters assume average values. Although the viscosity-dominated regime would be over
in a matter of seconds if all the parameters are set to extreme values in favor of toughness, it would still take

several days before the toughness-dominated regime is reached (i.e., at least one order of magnitude longer

than the duration of a hydraulic fracturing treatment). Further analysis shows that radial hydraulic frac-

tures in impermeable rocks generally propagate in the viscosity regime, and that the toughness regime is

relevant only in exceptional circumstances. This observation has profound consequences for the imple-

mentation of a propagation criterion in numerical simulators of hydraulic fractures.

Table 6

The typical values of the parameters

Quantity Min–Max

Q (m3/s) 0.03–0.08

E (GPa) 7–40

m 0.15–0.4

l (Pa s) 0.1–0.5

KIc (MPam1=2) 0.5–2

Fig. 6. Dependence of the dimensionless fracture radius in the viscosity scaling on the dimensionless toughness K. The solid lines

correspond to the zero-order solutions and the dashed line corresponds to the first-order solution.
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7. Conclusions

One of the objectives of this research is to analyze the propagation regimes of a penny-shaped hydraulic

fracture. Scaling of the equations reveals that this problem depends only on one dimensionless parameter,
which can be chosen to be either the toughness K or the viscosity M.

We have constructed the asymptotic solutions for K ¼ 0 and K � 1. The zero toughness solution is

characterized by a cubic root singularity of the pressure at the fracture tip. Due to the different nature of the

singularity for K ¼ 0 and for K > 0, this solution can be considered as an outer solution in a singular

asymptotic expansion for small K. The solution for large toughness is regular and can, in principle, be

improved by considering higher order terms. In this case, the pressure is logarithmically singular near the

tip, but this singularity is only revealed by the first-order approximation. Both the zero and large toughness

solutions constitute new benchmarks which can be used to check numerical algorithm devised to model the
propagation of planar hydraulic fractures of arbitrary shape.

The boundaries of the regimes of the propagation are analyzed by comparing the derived asymptotic

solutions with the results of numerical simulations. First, it is shown that the numerical and asymptotic

solutions indeed match for certain values of the controlling parameter. Then, the limit values of the para-

meter are estimated. According to these estimates, the fracture propagates in the viscosity-dominated re-

gime if KK 1 and in the toughness-dominated regime if KJ 3:5. Finally, this analysis indicates that

radial hydraulic fractures propagates in the viscosity-dominated regime (where toughness is irrelevant), for

typical values of the physical parameters.
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Appendix A. Alternative form of the elasticity equation

The opening wðrÞ of a radial crack due to the net pressure pðrÞ is classically expressed as (Sneddon, 1951)

wðrÞ ¼ 8R
pE0

Z 1

q

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � q2

q Z 1

0

xpðxnRÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dxdn ðA:1Þ

where q ¼ r=R. After operating the change of variable s ¼ xn, the above equation is transformed into

w ¼ 8R
pE0

Z 1

q

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � q2

q Z n

0

s�ppðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � s2

p dsdn ðA:2Þ

where �ppðr=RÞ � pðrÞ.
Following Barr (1991), the double integral in the right-hand side of (A.2) can be reduced to a single one.

First, let us introduce the function gðx; nÞ

gðs; nÞ ¼ s�ppðsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � q2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � s2

p ðA:3Þ
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Thus, (A.2) can be rewritten as

w ¼ 8R
pE0

Z 1

q

Z n

0

gðs; nÞds
� �

dn ðA:4Þ

Changing the order of integration in the double integral of (A.4) yieldsZ 1

q

Z n

0

gðs; nÞds
� �

dn ¼
Z q

0

Z 1

q
gðs; nÞdn

� �
dsþ

Z 1

q

Z 1

s
gðs; nÞdn

� �
ds

Hence,

Z 1

q

Z n

0

gðs; nÞds
� �

dn ¼
Z q

0

s�ppðsÞ
Z 1

q

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � q2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � s2

p dn

2
64

3
75ds

þ
Z 1

q
spð�ssÞ

Z 1

s

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � q2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � s2

p dn

2
64

3
75ds ðA:5Þ

The terms in the square brackets can be expressed in terms of F , the elliptic integral of the first kind

(Abramowitz and Stegun, 1964)Z 1

q

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � q2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � s2

p dn ¼ 1

q
F arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

1� s2

r
;
s2

q2

 !
; if q > s ðA:6Þ

Z 1

s

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � q2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � s2

p dn ¼ 1

s
F arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

1� q2

s
;
q2

s2

 !
; if s < q ðA:7Þ

The final expression for w is given by (40).

Appendix B. Regularization of the elasticity equation

The main difficulty in calculating the coefficients Lij in (66) stems from a weak singularity in the kernel G.
Rewrite (66) as

Lij ¼
8

p

Z 1

0

X
�
i ðqÞIðj; qÞqdq

where

Iðj; qÞ ¼
Z q

0

1

q
F arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

1� n2

s
;
n2

q2

 !
P�

j ðnÞndn þ
Z 1

q

1

n
F arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

1� q2

s
;
q2

n2

0
@

1
AP�

j ðnÞndn ðB:1Þ

The complete elliptic function of the first kind, F ðp=2; qÞ, behaves as (Abramowitz and Stegun, 1964)

F ðp=2; qÞ ’ 1

2
ln

16

1� q2

� �
; q ! 1 ðB:2Þ

but here both arguments of the elliptic function F tend simultaneously to the singular point ðp=2; 1Þ. The
proper behavior can be derived, however, by asymptotic expansion of F
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F arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

1� n2

s
;
n2

q2

 !
’ 1

2
ln

1� q
1þ q

16q2

q2 � n2

� �
; n ! q ðB:3Þ

The new asymptote reveals a logarithmic singularity near q ¼ 1. After analyzing the singularity of the
kernel, the integral (B.1) can be regularized in the usual way

Iðj; qÞ ¼
Z q

0

1

q
F arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

1� n2

s
;
n2

q2

 !
P�

j ðnÞn
"

� 1

2
ln

1� q
1þ q

16q2

q2 � n2

� �
P�

j ðqÞq
#
dn

þ
Z 1

q
F arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

1� q2

s
;
q2

n2

0
@

1
AP�

j ðnÞ

2
4 � 1

2
ln

1� n
1þ n

16n2

n2 � q2

� �
P�

j ðqÞ

3
5dn

þ 1

2
P�

j ðqÞ
Z q

0

ln
1� q
1þ q

16q2

q2 � n2

� �
dn þ 1

2
P�

j ðqÞ
Z 1

q
ln

1� n
1þ n

16n2

n2 � q2

� �
dn ðB:4Þ

After noting that the last two integrals in the above expression can be derived analytically and that

Z 1

q
F arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

1� q2

s
;
q2

n2

0
@

1
Adn ¼ 1� q ðB:5Þ

we can rewrite (B.4) as

Iðj; qÞ ¼
Z q

0

1

q
F arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

1� n2

s
;
n2

q2

 !
P�

j ðnÞn
"

� 1

2
ln

1� q
1þ q

16q2

q2 � n2

� �
P�

j ðqÞq
#
dn

þ
Z 1

q
F arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

1� q2

s
;
q2

n2

0
@

1
A P�

j ðnÞ
h

� P�
j ðqÞ

i
dsþ 1

2
P�

j ðqÞ 2

�
þ q ln

4ð1� qÞ
1þ q

�
ðB:6Þ

The above integral can be easily calculated up to a given precision at any point, except close to the tip. In

order to get an accurate value Iðj; qÞ near q ¼ 1, the known asymptote for the opening can be used to yield

Iðj; qÞ ’ p
4
33=2

Gj�1ð43 ; 2; 1Þ
h1=2j�1ð43 ; 2Þ

ð1� qÞ2=3; q 
 1 ðB:7Þ

Appendix C. Left and right hand sides of the lubrication equation at control points

The left and right hand sides of the lubrication equation are given respectively by

Nlðq;AðnÞ
1 ; . . . ;AðnÞ

n ;BðnÞÞ ¼
Xnþ1

i¼1

CðnÞ
i I�i ðqÞ

 
þ BðnÞI��ðqÞ

!
þ 4

9
q2

Xnþ1

i¼1

CðnÞ
i X�

i ðqÞ
 

þ BðnÞX��ðqÞ
!

ðC:1Þ

Nrðq;AðnÞ
1 ; . . . ;AðnÞ

n ;BðnÞÞ ¼ �q
Xnþ1

i¼1

CðnÞ
i X�

i ðqÞ
 

þ BðnÞX��ðqÞ
!3 Xn

i¼1

AðnÞ
i P�0

i ðqÞ
 

þ BðnÞP��0ðqÞ
!

ðC:2Þ

where I�i ðqÞ and I��ðqÞ are functions defined by

I�i ¼
Z 1

q
X�

i ðnÞndn; I�� ¼
Z 1

q
X��ðnÞndn ðC:3Þ
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The integrals I�i ðqÞ can be derived analytically for any particular i (although the general form of the
integral I�i has not been found). The explicit expressions for the first five integrals I�i ðqÞ and the integral

I��ðqÞ are given in Table 7.

The last term in the sum (67) has to be understood as a limit, because Nl and Nr are both zero at the tip.

Consider the asymptotic behavior of the left and right hand sides of Eq. (43) near q ¼ 1

Nlðq;AðnÞ
1 ; . . . ;AðnÞ

n ;BðnÞÞ ’ 4

9
X

ðnÞ
m0 ðC:4Þ

Nrðq;AðnÞ
1 ; . . . ;AðnÞ

n ;BðnÞÞ ’ � X
ðnÞ
m0

� �3 dPðnÞ
m0

dq
ðC:5Þ

In the limit when q ! 1 both Nl and Nr are zero, but their ratio is finite

lim
q!1

Nrðq;AðnÞ
1 ; . . . ;AðnÞ

n ;BðnÞÞ
Nlðq;AðnÞ

1 ; . . . ;AðnÞ
n ;BðnÞÞ

¼ � 9

4
lim
q!1

ðXðnÞ
m0Þ

2 dPðnÞ
m0

dq

" #
ðC:6Þ

Since X
ðnÞ
m0 and PðnÞ

m0 have the following asymptotic expansions near the tip

X
ðnÞ
m0 ¼ ð1� qÞ2=3

Xnþ1

i¼1

CðnÞ
i

Gi�1ð103 ; 2; 1Þ
h1=2i�1ð103 ; 2Þ

þO½ð1� qÞ3=2� ðC:7Þ

PðnÞ
m0 ¼ ð1� qÞ�1=3

Xn
i¼1

AðnÞ
i

Gi�1ð43 ; 2; 1Þ
h1=2i�1ð43 ; 2Þ

þOð1Þ ðC:8Þ

Substitution of the above equations into the limit (C.6) yields

lim
q!1

Nrðq;AðnÞ
1 ; . . . ;AðnÞ

n ;BðnÞÞ
Nlðq;AðnÞ

1 ; . . . ;AðnÞ
n ;BðnÞÞ

¼ � 3

4

Xn
i¼1

AðnÞ
i

Gi�1ð43 ; 2; 1Þ
h1=2i�1ð43 ; 2Þ

 ! Xnþ1

i¼1

CðnÞ
i

Gi�1ð103 ; 2; 1Þ
h1=2i�1ð103 ; 2Þ

 !2

Hence the last term in the sum (67) is given by

3

4

Xn
i¼1

AðnÞ
i

Gi�1
4
3
; 2; 1

� �
h1=2i�1

4
3
; 2

� �
 ! Xnþ1

i¼1

CðnÞ
i

Gi�1
10
3
; 2; 1

� �
h1=2i�1

10
3
; 2

� �
 !2

2
4 þ 1

3
5

2

ðC:9Þ

Appendix D. Evaluation of Xk1 and xk1

Noting that Pk0 is a constant, the expression (79) for Xk1 can be rewritten as

Xk1 ¼
8

p
ck1Pk0

Z 1

q

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � q2

q Z 1

0

xffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dxdn þ 8

p
ck0

Z 1

q

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � q2

q Z 1

0

xPk1ðxnÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dxdn ðD:1Þ

Table 7

Integrals I��ðqÞ and I�i ðqÞ for i ¼ 1; . . . ; 5

I��ðqÞ � 4
9p �3pq3 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
ð1� 4q2Þ þ 6q3 arcsinq

� �
I�1 ðqÞ �0:2092ð1� qÞ2=3ð�3� 2q þ 5q2Þ
I�2 ðqÞ 0:02710ð1� qÞ2=3ð9þ 6q þ 115q2 � 130q3Þ
I�3 ðqÞ �0:001761ð1� qÞ2=3ð�81� 54q þ 2727q2 � 9280q3 þ 6688q4Þ
I�4 ðqÞ �25:30

ffiffiffi
2

p
ð1� qÞ2=3ðq � 1Þð�0:2291� 0:9529q þ q2Þð0:01055þ 0:06145q þ q2Þ

I�5 ðqÞ �87:92
ffiffiffi
2

p
ð1� qÞ2=3ðq � 1Þðq � 0:6631Þðq � 0:5744Þðq � 0:06444Þð0:02091� 0:02217q þ q2Þ
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where Pk1ðqÞ is given by (88). The following integrals are needed to evaluate Xk1Z 1

q

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � q2

q Z 1

0

xffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dxdn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
ðD:2Þ

Z 1

q

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � q2

q Z 1

0

x lnðxnÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dxdn ¼ ðln 2� 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
þ q arccos q ðD:3Þ

Z 1

q

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � q2

q Z 1

0

x lnð1� ðxnÞ2Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dxdn ¼ 2I� qð Þ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
ðD:4Þ

where the integral I�; given below, has to be evaluated numerically

I�ðqÞ ¼
Z 1

q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � q2

q arcsin ndn ðD:5Þ

The function I�ðqÞ is plotted in Fig. 7.

Finally, integration of (D.1) yields

Xk1 ¼ Bk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
� 8

p
Akck0

ln 2� 2

3

��
þ 2

5

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
þ 1

3
q arccos q � 2

5
I�ðqÞ

�
ðD:6Þ

where

Bk ¼
8

p
ck1Pk0

�
þ ck0P

�
k1

�
Determination of the volume xk1 corresponding to the opening Xk1 by means of (83) requires the following

integralsZ 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
qdq ¼ 1

3
;

Z 1

0

arccos qq2 dq ¼ 2

9
;

Z 1

0

I�ðqÞqdq ¼ 2

9
ðD:7Þ

Note that the last integral can be evaluated in closed form.

Fig. 7. Function I�.
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Finally, xk1 can be expressed as

xk1 ¼
2p
3
Bk �

16

9
Akck0 ln 2

�
� 14

15

�
ðD:8Þ
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