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Abstract

This paper presents an analysis of the propagation of a penny-shaped hydraulic fracture in an impermeable elastic
rock. The fracture is driven by an incompressible Newtonian fluid injected from a source at the center of the fracture.
The fluid flow is modeled according to lubrication theory, while the elastic response is governed by a singular integral
equation relating the crack opening and the fluid pressure. It is shown that the scaled equations contain only one
parameter, a dimensionless toughness, which controls the regimes of fracture propagation. Asymptotic solutions for
zero and large dimensionless toughness are constructed. Finally, the regimes of fracture propagation are analyzed by
matching the asymptotic solutions with results of a numerical algorithm applicable to arbitrary toughness.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This paper deals with hydraulic fracturing, a technique mainly used in the petroleum industry to enhance
the recovery of oil and gas from underground hydrocarbon reservoirs. Other applications include (but are
not limited to) underground disposal of liquid toxic waste, determination of in situ stresses in rock, and
creation of geothermal energy reservoirs, see the review by Mendelsohn (1984).

Hydraulic fracturing consists of injecting a viscous fluid into a well under high pressure to initiate and
propagate a fracture. The design of a treatment relies on the ability to predict the opening and the size of
the fracture as well as the pressure of the fracturing fluid, as a function of the properties of the rock and the
fluid. However, in view of the great uncertainty in the in situ conditions, it is of particular importance to
identify the key dimensionless parameters and to understand the dependence of the hydraulic fracturing
process on these parameters. In that respect, the availability of solutions for idealized situations is especially
valuable. The construction of such solutions, for the particular case of a penny-shaped fluid-driven fracture
in an elastic medium, is one of the topics of this paper.
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Since the pioneering work by Khristianovic and Zheltov (1955), there have been numerous contributions
on the modeling of fluid-driven fractures. The early efforts naturally focused on analytical solutions for frac-
tures of simple geometry, either straight in plane strain or penny-shaped (Khristianovic and Zheltov, 1955;
Barenblatt, 1956; Perkins and Kern, 1961; Geertsma and de Klerk, 1969; Nordgren, 1972; Abé et al., 1976;
Geertsma and Haafkens, 1979; Advani et al., 1987). All these solutions are approximate, however, as they
contain strong assumptions about either the opening or the pressure field. Behind such simplifications lies the
difficulty of solving the coupled non-linear integro-differential equations that govern the problem in question.

In recent years, the limitations of analytical models have shifted the focus of research towards the de-
velopment of numerical algorithms to model the three-dimensional propagation of hydraulic fractures in
layered strata characterized by different mechanical properties and/or in situ stresses (Clifton and Abou-
Sayed, 1981; Advani et al., 1990; Sousa et al., 1993; Shah et al., 1997; Peirce and Siebrits, 2001; Siebrits and
Peirce, 2002). Devising an algorithm that can robustly and accurately model such a complicated process is
by no means a simple task. Indeed, the algorithm has to cope with propagation of a fracture, fluid flow
within the fracture and, in general, exchange of fluid between the fracture and the surrounding rock. In fact,
a recent comparative study of many available hydraulic fracture simulators (Warpinski et al., 1993) shows
significant differences between their predictions, with the fracture size varying by as much as a factor of
three. The problem is compounded by the lack of exact solutions for a propagating penny-shaped hydraulic
fracture to benchmark the numerical programs.

The first objective of this research is to construct rigorous solutions for the problem of a penny-shaped
fluid-driven fracture, with a clear statement of their range of applicability. The other objective arises from a
longstanding debate on the relevance of the rock toughness. This question is of fundamental importance for
numerical modeling. If toughness is relevant, the shape of the fracture must be determined by tracking the
fracture tip; if not, the fracture shape can be identified by the fluid front, which is much easier to follow than
the fracture edge. There exist different points of view on this matter. For example, Geertsma and de Klerk
(1969) argued that the toughness is irrelevant whenever the fracture is large enough, but Abé et al. (1976,
1979) came to the opposite conclusion from an analysis that distinguishes the fluid front from the crack edge.

An entirely different approach to the issue of toughness invokes an argument based on the ratio of the
energy dissipated in the rock to create new fracture surfaces to the energy dissipated in the fluid by viscous
flow (Detournay, 1999; Carbonell et al., 1999; Garagash, 2000). According to this argument, the influence
of toughness can be neglected if this energy ratio is small. For a hydraulic fracture in plane strain, this
criterion yields a critical value for a dimensionless toughness below which toughness is negligible (Carbonell
et al., 1999). Interestingly, this criterion does not depend on the confining stress, in contrast to those
proposed by Geertsma and de Klerk (1969) and Abé et al. (1976, 1979).

The energy argument suggests that there must be three regimes of the propagation: viscosity-dominated
(in which the toughness may be neglected), toughness-dominated (in which the viscosity may be neglected),
and transient (in which both parameters are important). The second objective of this research is to analyze
the regimes of propagation of a penny-shaped hydraulic fracture in an impermeable elastic rock.

The structure of the paper is as follows. The problem formulation is described in Section 2. In Section 3,
we discuss the scaling of the governing equations and we introduce the viscosity- and toughness-dominated
regimes of fracture propagation. Sections 4 and 5 present asymptotic solutions for zero toughness and large
toughness, respectively. The regimes of fracture propagation are analyzed in Section 6, and concluding
remarks are given in Section 7.

2. Problem formulation

Consider an axisymmetric hydraulic fracture propagating in an infinite impermeable elastic medium
characterized by Young’s modulus E, Poisson’s ratio v, and toughness Kj. (see Fig. 1). An incompressible
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Fig. 1. A penny-shaped hydraulic fracture.

Newtonian fluid with viscosity u is injected at the center of the fracture at constant volumetric rate Qp. We
seek to determine the crack aperture w(r,¢) as a function of the radial coordinate » and time 7, the net
pressure p(r,¢) (the difference between the fluid pressure pr and the far-field compressive stress g, per-
pendicular to the fracture plane), and the fracture radius R(¢).

Several assumptions are introduced to simplify this problem:

1. the fluid is injected from a point source (i.e., the wellbore radius is negligible compared to the fracture
radius);
2. the fluid reaches the tip of the crack (i.e., the lag between the fracture tip and the fluid front is very small
compared to the fracture radius);
. the fracture propagates continuously in mobile equilibrium;
4. lubrication theory is applicable.

W

The legitimacy of Assumption 2 is based on an analysis of the near tip region of a fluid-driven fracture
(Garagash and Detournay, 2000), which indicates that the lag A reaches a maximum value 4y ~ uVE?a,°
with ¥ denoting the tip velocity, when Kj. = 0. For typical values of the parameters, 4y is of the order of
107! m and thus generally very small compared to the fracture radius, which can reach dimension of order
of 10> m. Furthermore, the actual lag A could be very small compared to o, if Ki. > 0. By neglecting the lag,
the solution does not depend on the far-field stress oj, which enters the formulation only as a reference
stress.

The complete formulation of this problem relies on equations from elasticity and lubrication theories, on
a fracture propagation criterion from linear elastic fracture mechanics, and on boundary conditions at the
inlet and at the tip of the fracture.

The two coupled equations involving the fracture opening w(r, ¢) and net pressure p(r, t) consist of a non-
local integral relation from elasticity (Sneddon, 1951)

' xp(xER, 1)
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and a non-linear differential equation from lubrication theory (Batchelor, 1967)
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Eq. (2), which is usually referred to as Reynolds equation, is obtained by eliminating the radial flow rate
q(r,t) between the fluid mass balance

ow 10
E‘F;E(WD—O (3)
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and Poiseuille law

w Op
=——— 4
1= "Tuor “)
In the above, E' is the plane strain modulus, which can be expressed in terms of E and v as E' = E/(1 —?).
According to linear elastic fracture mechanics (Kanninen and Popelar, 1985), the fracture propagation
criterion takes the form

K = K. (5)

where K; denotes the mode I stress intensity factor and Kj. the material toughness. For a penny-shaped
crack, K can be expressed as (Rice, 1968)

_ 2 [y
VaR Jo VR? — 2
Condition (5) always applies, under Assumption 3 of continuous mobile equilibrium. The right-hand side of

(6) is thus independent on time. The propagation condition (5) can equivalently be imposed as an asymp-
totic condition on the crack opening at the tip » = R (Rice, 1968)

K

dr (6)

2 KIc r
~a 2R R—E 1L« 7
" T E " RS (7)

The fracture tip is characterized by zero fracture opening
w=0, r=R (8)

and a no-flow condition ¢ = 0, which can be expressed in terms of opening and pressure by means of
Poiseuille law (4) as

p

3

w — = 07 ryr = R 9
or 9)
Injection of fluid from the borehole is idealized by a source at the center of the fracture. Based on mass
balance considerations, the source condition can be expressed as

2n liIr(} rq = Qo (10)

It follows from (10) that ¢ ~ 1/r near the source. According to Poiseuille law (4), the fluid pressure is thus
logarithmically singular at the source, p ~ —Inr. The source can alternatively be taken into account by the
global mass balance

R
Qot:2n/ wrdr (11)
0

This equation can also be obtained by integrating the local mass balance (3) and taking into account both
boundary conditions (9) and (10).

The set consisting of the elasticity equation (1), Reynolds equation (2), the propagation criterion (5) or
(7), the inlet condition (10) or (11) and the tip conditions (8) and (9) forms a complete system for deter-
mining w(r, t), p(r,t), and R(¢) with 0 <r < R(¢f), t = 1o, starting from known values of these quantities at an
initial time #,. However, in accordance with Assumptions 1 and 2, we are looking for solutions for which the
influence of the initial conditions has vanished.
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3. Scaling
3.1. General form

Scaling of this problem hinges on defining dimensionless crack opening @, net pressure /1, and fracture
radius v as

w(r, 1) = &(t)L(1)Q(p, 7(1)) (12)
p(r, 1) = e()E'T (p, 2(1)) (13)
R(1) = L()(2(1)) (14)

With these definitions, we have introduced the dimensionless radial coordinate p =7/R(z) (0<p<1), a
small number ¢(z), a length scale L(¢) of the same order of magnitude as the fracture radius R(¢), and a
dimensionless parameter 2(¢), which depends monotonically on ¢. The form of the scaling (12)-(14) is
motivated by elementary elasticity considerations, by noting that the average aperture scaled by the fracture
radius is of the same order as the average net pressure scaled by the elastic modulus. Explicit forms of the
parameters &(z), L(¢), and 2(¢) are given below for both the viscosity and the toughness scalings.

First, it is convenient to define a viscosity u’ and a toughness K’, respectively proportional to u and K,
to avoid carrying numerical factors in the equations

2\ 12
W= 12y, K’:4<;) Kie (15)
The main equations are transformed as follows, under the scaling (12)-(14).

e Elasticity equation
Q—8~//1 14 U X (x¢)
'/, \/52 _ph V1-=x2

drdé (16)

o Lubrication equation. The left-hand side 0w/0¢ of the lubrication equation (2) can now be written as

ow . . . 0Q . (0Q p dy 0Q
— = (i Q—elp—+elP| — - L= 1
3 (s +8L) stap—i—s 9’(6@ yd@@p) (17)
while the right-hand side is transformed into
110 ,0p SEL1 O , OIT
—— = — | =———=— | pQ°— 1
W ror <rw 6r> wy* p or p op (18)
After multiplying both sides by #/¢L, we obtain a new form of the lubrication equation
ét Lt Lt 0Q . /0Q p dy 0Q SEt 1 9 oIl
i le-=p— Y et i I Yo 1
<8+L> Lp6p+g)t(697 yd@@p) W y2p Op p op (19)
o Global mass balance
1
2n3L3y2/ Qpdp = Oyt (20)
0

e Propagation criterion. The propagation criterion (5) can either be expressed in the form of the crack
opening tip asymptote following (7)
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1/2
=t (= p) Po1-pxl (21)
or as an integral constraint on the net pressure according to (6)
K27, n
R Vi | 22
eEL2 T ! /0 /l_pzp p (22)

3.2. Viscosity and toughness scalings

We now introduce viscosity and toughness scalings, respectively denoted by subscripts m and k. Al-
though there is some freedom in defining the scaling parameters ¢ and L, the actual choice is restricted by
the requirement that the dimensionless quantities (€2, I1, and y) should be O(1). Two equations are used to
identify ¢ and L. The first equation expresses global mass conservation and the requirement that the average
opening Q is O(1)

8L3 = Qot (23)

The second equation depends on the particular scaling used. For the viscosity scaling, the dimensionless
group containing the viscosity in the lubrication equation (19) is set to one

/

u

——=1 24
SE't (24)

while for the toughness scaling, it is the dimensionless group with the toughness in the propagation criterion
(21) or (22), which is set to one

Kl

FLA 1 (25)

Note that in view of (23), (20) simplifies to yield a relationship between the dimensionless opening 2 and the
radius y

1
27ry2/ Qpdp =1 (26)
0

Consider now the viscosity scaling. The small parameter ¢, and the lengthscale Z,, are solution of (23) and

(24)
/ 1/3 13 4 1/9
o= () L, = (EQ! (27)
E't w

Since both ¢, and L,, are power laws of time, it follows that

bt 1 Lyt 4

G 3 L, 9 (28)
It is also natural to introduce the dimensionless toughness #"(¢)
2 1/18
* = (irgeem) >

so that the propagation criterion in terms of either the opening tip asymptote (21) or the integral pressure
constraint (22) can be written as
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Qu=A1-p)"" 1-p<1 (30)

27/2V1/2 /1 i
A= " pd 31
ey} ﬂp p (31)

In the viscosity scaling, the toughness " is the only parameter appearing in the set of the governing
equations. Hence, #" can be identified with 2, (the evolution parameter 2 for the viscosity scaling) and the
solution in this scaling will be in the form Q,,(p, #"), I1,,(p, "), and y,,(#"). Note that #" is a small number
in the viscosity-dominated regime.

Next, we introduce the toughness scaling; ¢, and Z; are now determined from (23) and (25)

K/6 1/5 Q%EIZtZ 1/5
& = E/éiQOt , L= K72 (32)

These expressions imply that

Gt 1 Lg 2

o 5 I, 5 (33)
A dimensionless viscosity .#(t) is logically defined as
33 3
_ 0
M = '“,< K822 ) (34)

so that the lubrication equation (19) can be rewritten as

1 2 an 2 2 an P d“/k an 1 © 36Hk
M = —=p— |~z M| ————— — | =5 — | pQ, — 35
(5 ¢ SPGP) 5 (@/% e ddl ) e o\ (35)
In the above equation, we have already identified the viscosity .# as the evolution parameter #;; hence, the
solution in the toughness scaling will be in the form Q(p, .#), I;(p, #), and vy, (.#). The toughness-

dominated regime corresponds to small values of the viscosity .Z.
However, the dimensionless viscosity .# and toughness ¢ are simply related by

VEY s (36)

The transition between viscosity- and toughness-dominated regimes can thus be understood in terms of
only one parameter, which we select to be .#". Also, the small viscosity solution can equivalently be referred
to as the large toughness solution. It is also interesting to note the relationships between the expressions for
the small parameter ¢ and the lengthscale L in the two scalings

Ly

m _ ,—6/5
— =",

= (37)
&k k

It then follows that the solution # = {Q, II,y} can be easily converted from one scaling to the other ac-
cording to

Qn — o, — A Vm

— 5 38
Q I, Vi (38)

The above analysis also indicates that, for the two limit cases #* = 0 and #" = oo (.# = 0), the solution is
self-similar and thus does not depend on initial conditions. For any other value of .#", the solution is not self-
similar and is a function of .#". In fact, since .#" is a monotonically increasing function of time, the solution
necessarily evolves from the viscosity-dominated regime (#" < 1) towards the toughness-dominated regime
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(A > 1). If & is the controlling parameter, the zero-toughness solution (#" = 0) provides the initial con-
ditions from which the solution will evolve.

4. Zero-toughness solution
4.1. Problem formulation

We now turn towards the construction of the zero-toughness self-similar solution .0 = {Qu0, L0, V0 }
where

Qmo(p) = Qm(p70)7 Hmo(p) = Hm(p70)’ VmO = ym(o)

It is actually convenient to rescale the opening according to

Quo(p)

§mO(p) = y 0

(39)
which allows, as shown below, to first solve for Z,, = {ﬁmo, I,o} and then compute y,,. Following Barr
(1991), it is also advantageous to rewrite the conventional elasticity equation (1) by reducing its right-hand
side to a single integral (see Appendix A for details)

K / G(r/R, &)p(ER, 1)EdE (40)
0

wir ) = —

where the kernel G is given in closed form as
G(p,¢) = (41)

with F denoting the incomplete elliptic integral of the first kind (Abramowitz and Stegun, 1964).
Thus the system of equations for the limit case #° = 0 can be written in terms of Q,(p) and I1,(p) as
follows:

o FElasticity equation:
_ 8 !
=, [ Gl MmO 42)
0

with the kernel G given by (41).
e Lubrication equation.

1
— 4 —3 deO
QmOédé + _p2QmO = _me
/p 9 ¢ dp

(43)

This form of the lubrication equation is obtained by integrating the lubrication equation (19) from p to 1
with the weight £ and making use of the tip conditions (45).
e Propagation criterion:
1
11
——"__pdp=0 (44)

0o 1 —p?



A.A. Savitski, E. Detournay | International Journal of Solids and Structures 39 (2002) 6311-6337 6319

o Conditions at the tip (p = 1):
mo _ (45)

e Global mass balance:

~1/3

1
Ymo = (27’[/ QmOp dp) (46)
0

The first four equations (42)—(45) are complete with respect to Qu0(p) and IT,,0(p). The dimensionless radius
7mo_can be computed from (46) once the function €,(p) has been identified; this justifies the rescaling
VmOQmO - QmO-

4.2. Tip and inlet asymptotic behavior

The assumption that the fluid front coincides with the crack tip results in a pressure singularity at the tip.
This singularity must be properly accounted for in order to obtain an accurate solution of the problem. It
was first shown by Spence and Sharp (1985) that the opening behaves near the tip as (R — r)z/ ? and the net
pressure as (R — r)fl/ ? under the assumptions of zero lag (A = 0) and zero toughness (K’ = 0). These
asymptotes were also found as an exact solution to the problem of a semi-infinite hydraulic frac-
ture propagating in an impermeable rock with 1 = 0 and K’ = 0 (Desroches et al., 1994). For a Newtonian
fluid, the tip asymptotes for the crack opening w and the net pressure p are

. 1/3 . 1/3
'RR2 . . 1 'RE"? o A
W=2‘/3x35/"<—“E, ) EP10EP), p=-gp <—”R ) & o) (47)

where é =1 — r/R < 1. Thus, the pressure is singular both at the inlet and at the tip. In dimensionless
form, these asymptotes are rewritten as follows.

o [Inlet asymptote. The pressure is logarithmically singular at the source
HmON_lnp7 p < 1 (48)

e Tip asymptote. The tip asymptotes for Q,0 and 11,y are deduced by rescaling the singular solution (47) in
terms of Q,, I1,,0, and p

ﬁmo ~2 X 31/6(1 - p)2/37 HmO =~ _374/3(1 - p)_1/37 - p< 1 (49)

It is interesting to note that the rewriting of the asymptotes (47) in terms of Q,, is only possible because of
the rescaling (39).

4.3. Method of solution

The method for constructing a solution of the formulated problem is inspired by, although different
from, the scheme described by Spence and Sharp (1985) and the approach used by Carbonell et al. (1999) to
find the zero-toughness solution for a plane strain fracture.

The solution is sought in terms of series expansions. Since the non-linearity of this problem is only
introduced by the lubrication equation, the superposition principle can be applied to solve the elasticity
equation, taking also into account the boundary conditions and the propagation criterion. Here, the
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solution is sought as a sum of a general solution 7 = {ﬁ*, IT"} having the expected behavior (49) at the

fracture tip, and a particular solution # = {Q | IT**} having the correct singularity (48) at the source
Fmo = 7 (p) + BF " (p) (50)

where B is an as yet unknown coeflicient. Furthermore, the general solution is represented in terms of
infinite series of base functions II; (p) and Q; (p)

M= S AL (p) + BT (p) (1)

0= CR(p) + 82" (p) (52)

where 4; and C; are also unknown coeflicients.

Both the general solution Z and the particular solution Z  have to satisfy the elasticity equation (42).
A novelty of the approach described here is that application of (42) differs for # and Z . While @ and
T exactly satisfy the elasticity equation (42), the pressure and opening base functions ﬁf and II; are
chosen independently. Instead, the elasticity equation (42) provides a relationship between the coefficients
of the series for opening and for pressure, {4;} and {C;}. Further, an approximate solution .7 " i
sought by considering the first n; and ng terms of the series expansions (51) and (52) for the pressure and
opening, respectively.

4.4. Particular solution

A particular solution of the form II"™ = —In p + D satisfies the inlet asymptotic behavior, and allows an
easy determination of the constant D from the zero-toughness condition (44). Thus,

I =—Ilnp+1In2—1 (53)
Substituting the above expression into the elasticity equation (42) yields the corresponding opening ﬁ**(p)

_ 8
Q =—(1 — pA)'? = Z parccos p (54)
n T

Since the pressure I1**(p) satisfies the zero-toughness condition and is finite at the tip, Q" (p) must behave

as (1 — p)3 /2 near p = 1. Indeed, the asymptotic expansion of (54) near the tip yields
N 32 5/2
Q=5 (1-p"+0l1-p" 1-p<1 (55)

4.5. General solution

The central part of this approach is the construction of the general solution .#7*(;)) The set of base
functions, which must have the appropriate behavior at the tip according to (47), is chosen to be or-
thogonal. Such functions are Jacobi polynomials multiplied by the proper weights

II;(p) = I, (p) + (56)

P Ut B (f,z,p) (57)

h}/§<j,2> 3
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2 (p) }MG <13O 2 p) (58)

In the above, G;(p,q, p) is the Jacobi polynomial of order i defined on the interval [0, 1]

Glpra.p) = 1 i(— V(1) TR (59)

and %;(p, q) is the norm of G; defined as (Abramowitz and Stegun, 1964)

1
/O (1= p)""p""'Gip, 4, 0)G;(p: 4, p) dp = hi(p, 9)9 (60)
where ¢;; is the Kronecker symbol. Hence,

Mi+qli+pl(itp—q+1)
hilp.q) = (2i +p)T*(2i + p)

It can be easily shown that {Q; (p)} and {TT, (p)} are orthonormal sets of functions in the following sense '

(61)

| @@ =a, (62)

/ T, (p)T1, (p)pdp = 3 (63)

The constants w; in (56) are adjustments to the pressure base functions such that each one fulfills the
constraint (44). They are thus determined from

P
w; = ——~pdp 64
| g )
Table 1 lists the coefficients w; fori=1,...,4.
Substituting the finite series for IT* and Q into the elasticity equation (42) eventually yields the rela-
tionship between the two sets of coefficients

ns) nr) ZLUA no,nir) (65)
where
8 [, !
=2 [[@0)] [ apom@eaos (66)

Appendix B provides some details for the accurate evaluation of the elements L;;, in view of the weak
singularity of the kernel G. Note that the L;; have to be calculated only once, as they do not depend on the
parameters no and n;;. Numerical results indicate that for the given ith mode of pressure, the first (i + 1)
terms of the opening series provide a fairly good approximation of the corresponding integral. Thus, we can
set no =ng + 1 = n+ 1. The computed coeflicients L;; are listed in Table 2 for n = 4.

! Note that functions IT 7 are not orthogonal. It has been verified that orthogonalization of this set of functions does not improve the
convergence and the accuracy of the solution.



6322 A.A. Savitski, E. Detournay | International Journal of Solids and Structures 39 (2002) 6311-6337

Table 1

Values of constants w; fori=1,...,4
(O] (00} 3 Wy
2.479 0.7615 0.6329 0.5275

Table 2

Coefficients L;; for n =4
Ly 1 2 3 4
1 1.912 2.546 0.8201 0.6290
2 0.1982 —-0.03698 0.8135 0.1219
3 0.003556 —-0.08572 —-0.04883 0.4586
4 0.003472 —-0.007786 —0.08325 —-0.02817
5 0.0009090 —-0.005216 —-0.006443 —0.07449

4.6. Lubrication equation

The coefficients AE”) and B™ are finally determined from the lubrication equation by means of the least
squares method. The truncated series of base functions for the opening and the pressure are substituted into
the lubrication equation (43). Then, the left and right hand sides of the equation are computed at a set of m
equally spaced control points (m = 10 for n = 1,...,4). Now, we can construct a cost function as a sum of
squares of discrepancies at the control points

n [ (ps Al ..., A", B

n

2
AP, ... 4D B = : » .
( 1 ) i=1 E (pnAl 9. ~~7A51n),B(n)) ( )

where p, = 0 and p,, = 1. The expressions for the left and right hand sides of the lubrication equation =’
and Z', respectively, are given in Appendix C.

The unknown coefficients Af”) and B"™ are to be computed by minimizing the cost function A. The
procedure starts from » = 1. Then, the solution from the current # is used as an initial guess for the next
value n = n + 1. It is interesting to note that the dependence of the coefficients Ag") and B" upon n stems
only from the non-linearity of the lubrication equation.

4.7. Results
The coefficients B®, 4", ), and C are listed in Table 3 for n = 1,...,4, while the opening ﬁf:g (0) at the
fracture 1nlet and the constant 7" are given in Table 4, also for n = 1,...,4. The opening ﬁ("g and net

pressure 11" .o are plotted in Fig. 2 for n = 4. (The pressure plot is truncated at both ends because of the
singularity at the tip and at the source.) However, the first-order solution n =1 is already an excellent
approximation, as it could hardly be distinguished from the solution n = 4 if it were plotted in Fig. 2. This
can be also confirmed by examining the convergence of the solution in Table 4. These results show the
robustness of the calculation scheme and the very rapid convergence of the solution with n. The explicit
expressions for the opening estimate ﬁf,fg (p) and the net pressure estimate anlg(p) are given below
Q%P%iq +i£¥%(Bp—®]ﬂ p)"* + B {iupf”—%pmmmp (68)

U(m§+1) (69)

2
) =4" o - ——
T - )
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Table 3
Coefficients B™, 4", and C™ forn=1,...,4
n 1 2 3 4
B™ x 10? 9.269 9.011 9.389 9.320
A" % 10! 3.581 3.499 3.409 3.386
AP x 108 - 5.442 9.805 11.33
AP x 10 - - 2.130 2.358
AP % 104 - - - 1.646
ci x 10! 6.846 6.828 6.784 6.783
Cé") x 102 7.098 6.916 6.894 6.864
c x 10 - 7777 2.676 1.930
i x 104 - - 9.299 8.867
c x 104 - - - 2212
Table 4
Opening at the source 5%(0) and radius ) forn=1,...,4
GG n
n 2,0(0) ang
1 1.722 6.955 x 107!
2 1.729 6.965 x 107!
3 1.710 6.974 x 107!
4 1.713 6.976 x 107!
2.04
1.5 1
Qmo
1.0 A
0.5 1
0.0 T T \
0.0 0.2 0.8 1.0
1.5 4
1.0 1
0.5 A
o
0.0 T T )
0.2 0.8 1.0
-0.5
-10-
Fig. 2. Crack opening Qf:g and net pressure I1%)(p) for n = 4.
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The very small number of terms in the expansions that are needed to capture the solution accurately is
largely due to the proper account of the singular behavior of the solution at the source and at the tip.

5. Large-toughness asymptotic solution
5.1. Problem formulation

The large toughness solution corresponds to the situation when the dimensionless viscosity .# < 1. The
toughness scaling is appropriate for this case. The system of equations for the toughness-dominated regime
can be rewritten in terms of I1;, €, and y, as follows:
o FElasticity equation:

' 11 t)
81 X (sE.0)

dé 70
/ /& / V1—x2 i (70)
o Lubrication equation:
1
/%(/ Qk§d£+ p >+0(,//2) Qia;k (71)
P

which is deduced from the lubrication equation (35), after integrating both sides of the equation from p to 1
with the weight ¢. Also, the term O(.#?) in the left-hand side of (71) has not be written explicitly, as we only
seek to determine the solution to order of .Z.

e Propagation criterion:

_ 8v2
et = / \/1_—p dp (72)
e Global mass balance:
1
2m/i/ Qpdp =1 (73)
0

Note that the pressure near the tip is now logarithmically singular. This result can be directly verified by
substituting the square-root opening asymptote (7) in the Poiseuille equation (4).

5.2. First-order asymptotic solution

We now seek a solution #; = {Qy, I, v, } of the system of equations (70)—(73) to order of .# in the form
of a regular asymptotic expansion, following the approach used by Garagash (2000) for the equivalent
plane strain problem

F (M) = F g+ MFyy +O(M*) (74)

where F 1o = {Qso0, ko, Y40} and F 1 = {41, 11, 7y, }- Substituting the expansions (74) into (70)—(73) and
collecting terms O(1) and O(.#) results in the following sets of equations for the zero- and first-order terms
in the expansions (74).
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o O
870 /1 ¢ /1 xITio(x&)
Qo =—— dxd 75
o= [ e e e (75)
dil
d (76)
e 82 N I pd (77)
X0 T o o2
Yko = w;ol/z (78)
o O(M"):
87k xITi(x¢) 8710 / b Xy (xE)
Qu = dxd + = dxd 79
o / /¢ / V1—x2 ¢ \/f o V1I—x2 ¢ (79)
! 2 dir,,
Quédé+2p2 Q0 = - L& (80)
/p kO 3 kO '))ko %0 dp
) __16\/5 3/2/ (81)
=
/1 _
1 3
T = T 5 OxiYio (82)
where
1
Wy = Zn/ Qupdp (83)
0

The zero-order solution %, corresponds to an inviscid fluid (.# = 0). As expected, (76) implies that the
pressure is spatially uniform. The solution % is given in closed form by

o =3 (E) ~ 0.3004 (84)
3 1/5 1/

Q= (8—) (1-p%)" (85)
3\

Yio = (ﬁ) ~ 0.8546 (86)

Consider next the first-order term ;. Substituting Q4 and y,, into (80) yields a simple equation for I1;;(p)

del_ 1 2 P
dp Ak(3p+51—pz) ®7)




6326 A.A. Savitski, E. Detournay | International Journal of Solids and Structures 39 (2002) 6311-6337

which can be integrated to give an explicit expression for IT;(p) up to an unknown constant IT},
* 1 1 2
Hk1:H,(lfAk glnpfgln(lfp)

with

2
T
A, = ~ 1.709
k <8Hko>

Substituting Ty and I1;; into (79) yields Qy,

—

p) (see Appendix D for details)

TYES

8 6
0 =Bi(1-p)" —gAkm[(lnz - )(1 )"+ parccos p ~ LI (p)
with

8 )
By = - (a0 + vio1Tyy)

0.0

0.0 0.2 0.4 0.6 0.8 1.0

p

Fig. 3. Crack opening and net pressure in the toughness-dominated regime.

(88)
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The function 7*(p) defined as

/ \ [ —"— arcsm Edé (90)

has to be evaluated numer1cally. Although the opening is not known in closed form, the corresponding
volume wy; can nonetheless be integrated analytically (see Appendix D for details)

27 16 14
Wp1 :?Bk —9Ak’)/k0(1112 15> (91)

The two unknowns I}, and y,, are finally determined by solving (81) and (82)
544

T =T 5™ ~ —(.7349 (92)

_ 2¥5(324751n2)

It then follows that
B, ~ 0.8264

5.3. Results

Fig. 3 shows the solution for different values of .#. An interesting result pertains to the singular nature of
the first-order pressure solution (88) near the tip and the inlet. The logarithmic singularity near the tip
results from neglecting the fluid lag, while the logarithmic singularity near the inlet is caused by neglecting
the wellbore radius. The zero-order solution does not capture these singularities.

6. Regimes of fracture propagation

The solution for a penny-shaped hydraulic fracture depends only on one parameter, which we select to
be the toughness .#". In principle, we can define three regimes of propagation:

e viscosity-dominated regime (4 < A ,0), where the solution & can be approximated by %, (the zero-
toughness solution);

e mixed-regime (A 0 < H < HA'10), where the solution depends on both the viscosity and the toughness;

e toughness-dominated regime (4" > #'4), where the solution # can be approximated by the % (the
zero-viscosity solution).

Strictly speaking, the viscosity- and toughness-dominated regimes of propagation correspond to 4" < 1
and " > 1, respectively. It is possible, however, to identify the bounds 4",y and 4", such that 4" < 4,0
corresponds for all practical purposes to the viscosity-dominated regime, and %" > s to the toughness-
dominated regime. Pragmatically, these bounds can be assessed by considering the dependence of the
fracture radius 7y,, on #".

Consider first the large toughness asymptotic solution (74) in terms of 7 in the viscosity scaling. Using the
equivalence (36) and (38) between the two scalings, we can express y,, for large 4 as

Yo = Yok Ty, for A > 1 (94)

It can be readily deduced from (94) that the error of approximating y,, by the zero-viscosity solution
Voo = yk()%*z/s is less than 1% for 2" = 3.5; thus, it is appropriate to adopt %7y ~ 3.5.
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Identification of the practical upper bound 4", of the viscosity-dominated regime requires to compare
the zero-toughness solution with a general numerical solution. Such an approach has been successfully
applied to the analysis of the plane strain problem (Carbonell et al., 1999; Garagash, 2000). However,
unlike for the plane strain case, the solution for a penny-shaped fracture is not self-similar in all the regimes
of propagation. Thus, the radial hydraulic fracture solution must, in general, be computed numerically by
solving an evolution problem, while in the plane strain case, self-similar solutions depending on a parameter
similar to 2" (but which does not depend on time) can be computed independently in the form of series
expansions (Spence and Sharp, 1985).

Table 5
Parameters for tests I and 1T
Quantity Test 1 Test 11
0 (m’/s) 0.053 3x 1073
oo (MPa) 41.4 6.86
E (GPa) 38.8 5
v 0.15 0.42
1 (MPas) 2x 1078, 8 x 1078 1070
ro (m) 0.079 0.079
Kie (MPam'/?) 1 0.129, 0.194, 0.244, 0.322, 0.387, 0.463, 1.27

1.5 1
1.0 {
0.5 1
I, o |

-0.5

-1.0 T T T T |
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 4. Comparison of the opening and pressure of analytical solution and Loramec simulation given in the viscosity scaling for
A =0.15 and 1.5.
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Further analysis is based on the numerical results obtained with the code Loramec (Desroches, 2000).
This code is designed to simulate the propagation of a plane strain and a penny-shaped hydraulic fractures.
The algorithm is based on a combination of the finite difference and boundary element methods and is
made efficient through the use of a moving mesh. A description of Loramec can be found elsewhere
(Desroches and Thiercelin, 1993; Carbonell et al., 1999). We only note here that both the well radius and
the fluid lag are accounted for explicitly in Loramec.

Since Loramec is formulated in terms of dimensional variables, two sets of parameters are considered
(see Table 5). The parameters for Test I are similar to field parameters, while those for Test II correspond to
laboratory experiments. All results are further given in dimensionless form; they are computed from the
numerical solution at various stages of propagation of the fracture.

First, we compare numerical results corresponding to small and large values of the dimensionless
toughness to the asymptotic solutions derived earlier. Fig. 4 shows the opening and the pressure in the
viscosity scaling for small values of #". It is clear that while the parameter ¢ is small the matching between
the two solutions is very good. However, as this parameter increases the difference between the asymptotic
and numerical solutions becomes more and more evident. A similar situation is observed for large values of
toughness (see Fig. 5).

p
4 ‘%/‘=
1.5 u-.._._._._,_.,___,__.__,__._.__,_,%'.e_
\
o, =
m,, \\ ‘-‘—‘—A--A__A._.A__A__A_A‘Z[:ABHM
-h.:ﬁ—___ _‘
1.0 TR e e a =25
LA _ﬁ
0.5 - ' i ' T
0.0 0.2 0.4 0.6 0.8 10
p

Fig. 5. Comparison of the opening and pressure of analytical solution and Loramec simulation given in the viscosity scaling for
A =2.5,3.0 and 3.6. The solid line corresponds to the zero-order solution and the dashed line corresponds to the first-order solution.
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0.8 1
0.7 1
0.6 1
™

0.5

0.4 |

0.3

0 2 4 6 8 10

Fig. 6. Dependence of the dimensionless fracture radius in the viscosity scaling on the dimensionless toughness #". The solid lines
correspond to the zero-order solutions and the dashed line corresponds to the first-order solution.

The boundaries of the regimes of propagation are best determined from Fig. 6 showing the dependence
of the fracture radius in the viscosity scaling, y,,, on the toughness #". The numerical results suggest that
H'mo = 1 and Ay ~ 3.5 (which is consistent with the estimate based on comparing the zero- and the first-
order solution for large toughness). The transition regime appears to correspond to a remarkably small
interval of /.

The curve y,, ("), plotted in Fig. 6, is in principle travelled from left to right with increasing time.
Although this result could be interpreted to mean that a radial fracture starts in the viscosity-dominated
regime, it should be reminded that none of the solutions discussed here are applicable to the “early time” of
fracture initiation. Indeed, the well radius has been assumed negligible compared to the fracture dimension.
In fact, a radial fracture starts its existence in the toughness-dominated regime, matures in the viscosity-
dominated regime, and ages back in the toughness-dominated regime.

It is of interest to estimate the times at which transitions between regimes of propagation occur, given
realistic values of the parameters defining #". Consider Table 6 listing typical ranges of values of those
parameters. According to this table, the fracture would remain in the viscosity-dominated regime for many
years if all the parameters assume average values. Although the viscosity-dominated regime would be over
in a matter of seconds if all the parameters are set to extreme values in favor of toughness, it would still take
several days before the toughness-dominated regime is reached (i.e., at least one order of magnitude longer
than the duration of a hydraulic fracturing treatment). Further analysis shows that radial hydraulic frac-
tures in impermeable rocks generally propagate in the viscosity regime, and that the toughness regime is
relevant only in exceptional circumstances. This observation has profound consequences for the imple-
mentation of a propagation criterion in numerical simulators of hydraulic fractures.

Table 6

The typical values of the parameters
Quantity Min-Max
0 (m/s) 0.03-0.08
E (GPa) 7-40
v 0.15-0.4
1 (Pas) 0.1-0.5

Ki. (MPam!'/?) 0.5-2
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7. Conclusions

One of the objectives of this research is to analyze the propagation regimes of a penny-shaped hydraulic
fracture. Scaling of the equations reveals that this problem depends only on one dimensionless parameter,
which can be chosen to be either the toughness #° or the viscosity ..

We have constructed the asymptotic solutions for .#" = 0 and " > 1. The zero toughness solution is
characterized by a cubic root singularity of the pressure at the fracture tip. Due to the different nature of the
singularity for #" = 0 and for 2 > 0, this solution can be considered as an outer solution in a singular
asymptotic expansion for small 2#". The solution for large toughness is regular and can, in principle, be
improved by considering higher order terms. In this case, the pressure is logarithmically singular near the
tip, but this singularity is only revealed by the first-order approximation. Both the zero and large toughness
solutions constitute new benchmarks which can be used to check numerical algorithm devised to model the
propagation of planar hydraulic fractures of arbitrary shape.

The boundaries of the regimes of the propagation are analyzed by comparing the derived asymptotic
solutions with the results of numerical simulations. First, it is shown that the numerical and asymptotic
solutions indeed match for certain values of the controlling parameter. Then, the limit values of the para-
meter are estimated. According to these estimates, the fracture propagates in the viscosity-dominated re-
gime if # <1 and in the toughness-dominated regime if 2#° = 3.5. Finally, this analysis indicates that
radial hydraulic fractures propagates in the viscosity-dominated regime (where toughness is irrelevant), for
typical values of the physical parameters.
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Appendix A. Alternative form of the elasticity equation

The opening w(r) of a radial crack due to the net pressure p(r) is classically expressed as (Sneddon, 1951)

L ap(xER)

_8R (1 ¢
w(r)—ﬁ/p \/527'02 AV dxd¢ (A.1)

where p = r/R. After operating the change of variable s = x&, the above equation is transformed into

TPl g (A2)

s
nE" \/52_'02 0 VE-g

where p(r/R) = p(r).
Following Barr (1991), the double integral in the right-hand side of (A.2) can be reduced to a single one.
First, let us introduce the function g(x, &)

g(s,8) = P (A3)

Je-povE—s
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Thus, (A.2) can be rewritten as

W jg /p 1 [ /0 e.8) ds} dz (A4)

Changing the order of integration in the double integral of (A.4) yields

/p1 [/Oig(s,ads]d&:/op {/plg(s,é)dﬁ}dw/pl [/Slg(s,é)dé}ds

Hence,

dé|ds

[ [ ssoafoc= o0 [ przl\/?—“s?

dé|ds (A.5)

+ [ [ prlﬁ

The terms in the square brackets can be expressed in terms of F, the elliptic integral of the first kind
(Abramowitz and Stegun, 1964)

/1 : dg—lF arcsim/l_—’oZi if p>s (A.6)
rE-pVE-e P L=stp? ) |

1 @2 2
/ \/71 dizé (arcsin,/ll ;”%)’ ifs<p (A7)
s 52—p2</52—s2 -
The final expression for w is given by (40).

Appendix B. Regularization of the elasticity equation
The main difficulty in calculating the coefficients L;; in (66) stems from a weak singularity in the kernel G.
Rewrite (66) as

8 [, ,
Lj=-= / Q(p)1(j,p)pdp
0

T

where

S 1= 8 'l L 1=&p )
I(j,p)f/0 pF(arcsm 1_62,p2>Hj(é)éd§+/p éF(arcsm e IT5(£)Ed¢ (B.1)

The complete elliptic function of the first kind, F(n/2, p), behaves as (Abramowitz and Stegun, 1964)
1 16
F(n/Z,p):zln (1_—}02>, p—1 (B.2)

but here both arguments of the elliptic function F tend simultaneously to the singular point (/2,1). The
proper behavior can be derived, however, by asymptotic expansion of F
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. [1=p & 1 (1—p 16p° )
F — = | =1 , B3
(arcsm & 2n [Fp & E—p (B.3)

The new asymptote reveals a logarithmic singularity near p = 1. After analyzing the singularity of the
kernel, the integral (B.1) can be regularized in the usual way

L[ o 1=p2 &\ 1 1—p 16p .
](17,0)—/0 » F<arcsm 1_—éza;>nj(§)f—21n(l+ éz)nj(l’)ﬂ]df
: L 1=&p 1 ¢ o168\,
+/p [F(arcsm lpz,?)ﬂj(i)——ln (—ff )Hj(p)]dé
1, , 1—p 16p> 1, ! 1-¢ 168
+§Hj(p)/0 In <1+pp2_52>df+2ﬂj(p)/p ln<1+5€2_p2>dé (B.4)

After noting that the last two integrals in the above expression can be derived analytically and that

1 f
/pF(arcsin %g) dé=1-p (B.5)

we can rewrite (B.4) as
. 1 . 1=p? & 1 (1—,) 16p2)
1 = —|F = |IT; ——In|————= |IT} dé
G = [ - (arcsm s @3 (S0 ) a:

+/ F<arcsin,/l iz,gz>[H;f(f)—H;(p)]ds+%ﬂj(p)[2+plné‘<ll_~_7_’f)} (B.6)

The above integral can be easily calculated up to a given precision at any point, except close to the tip. In
order to get an accurate value /(j, p) near p = 1, the known asymptote for the opening can be used to yield

. T G; 1( ;2,1) 2/3
I ~ 7332 J—1\3 1— /3
(ip) =73 W) (1=p)"",

j—1

p < (B.7)

Appendix C. Left and right hand sides of the lubrication equation at control points

The left and right hand sides of the lubrication equation are given respectively by

n+1 n+1
E(p; A", ... A" BW) = <ZC§”>1i*(p)+B<">I** > (ZC Qi (p WQ**(/))) (C.1)
i=1

n+1
Er(p,A(ln)7 . 7A,(;’l)7B(n>) — _p(z Cl(n)Ql*( Q** > <ZA n H*/ H**/(p)) (Cz)
i=1

where I*(p) and I**(p) are functions defined by

1 1
* = QF cd R QF d C3
I / (Qede, 1 / (©)ede (C3)
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Table 7
Integrals I**(p) and I/ (p) fori=1,...,5
I"*(p) —%(—3np3 —2/1 = p2(1 — 4p?) + 693 arcsinp)
I (p) —0.2092(1 — p)**(=3 = 2p + 5p%)
L(p) 0.02710(1 — p)**(9 + 6p + 115p> — 130p%)
L(p) —0.001761(1 — p)**(—81 — 54p + 2727p* — 9280p° + 6688p*)
L (p) —25.30v2(1 — p)**(p — 1)(=0.2291 — 0.9529p + p2)(0.01055 + 0.06145p + p?)
I (p) —87.92v2(1 — p)**(p — 1)(p — 0.6631)(p — 0.5744)(p — 0.06444)(0.02091 — 0.02217p + p?)

The integrals I7(p) can be derived analytically for any particular i (although the general form of the
integral I has not been found). The explicit expressions for the first five integrals I (p) and the integral
I'*(p) are given in Table 7.

The last term in the sum (67) has to be understood as a limit, because Z’ and =" are both zero at the tip.
Consider the asymptotic behavior of the left and right hand sides of Eq. (43) near p =1

- n pmy 4
_:(p,A ,...,A£>,B()):§Qmo (C4)
= (n) ) pln) m\? dH%
E(p;4y",... Ay B") = (QmO) rre (C.5)
In the limit when p — 1 both Z' and Z" are zero, but their ratio is finite
n) pn) — (n)
fim Z s 4D BY) 9 @) U (C.6)
=1 El Al Al B0y A dp
Since Q% and 11 f:g have the following asymptotic expansions near the tip
n+l 10
—(n) 2/3 n Gi71(73271) 3/2
Qmo:(l—P)/ZC,UW‘FO[(I—P)/} (C.7)
i=1 hi—l(?az)
1.2,1)
n) __ -1/3
% =(1- Z 1/2( ) +0(1) (C.8)
3

Substitution of the above equations into the limit (C.6) yields

2
Z(p: A", ..., 4n B0 " Gi(32,1 S G, 2,1
i S (S ) (Lo s
= (p;Al 7"'aA" 7B(n)) i=1 hi—l(§’2) i=1 hz 1(3 ,2)
Hence the last term in the sum (67) is given by

2 2
3 - (n) G’;l(%72’1) — (n) Gifl(?7271)
4 (ZAi h?/2(4 2) Zci I +1 (C.9)

i—1 213> i=1 i—l(?’z)

[I

Appendix D. Evaluation of €2;; and o,

Noting that I, is a constant, the expression (79) for le can be rewritten as
kal Xff

8
Qun ==

1 1
¢ / x
IT
an ko/p T — o h T—-2

dxd«:+ ) drde (D.1)
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where I, (p) is given by (88). The following integrals are needed to evaluate €,

/\/é /\/1—x2 =vi-¢
xIn(x¢)

/\/7/ VI—x2
xIn(1 — (x¢)%)

/\/7/ V1-x2

where the integral 7*, given below, has to be evaluated numerically

[
ro)E = p?
The function I*(p) is plotted in Fig. 7.
Finally, integration of (D.1) yields

8 In2-2 2 1 2
Qu = Bi/1 — p? —nAkao[(Ilg,+5> V1—p? +§parccosp—§l*(p)

where

dxdé = (In2 — 2)4y/1 — p? + parccos p

dxdé =2I"(p) — 24/1 — p?

arcsin ¢d¢

8 .
By = - (Vkl”ko + ?konkl)

6335

(D.5)

Determination of the volume w;; corresponding to the opening €,; by means of (83) requires the following

integrals

! 1 ' 2 ! 2
/ V1—plpdp =7, / arccos pp*dp = =, / I'(p)pdp =3
0 35 9 Jo 9
Note that the last integral can be evaluated in closed form.

1.0 §

0.8 1

0.6 {
I*

0.4 {

0.2 {

0.0

0.0 0.2 0.4 0.6 0.8 1.0
p

Fig. 7. Function I*.

(D.7)
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Finally, w;; can be expressed as

2n 16 14
Wy = ?Bk 9Akyk0<ln2 15) (Dg)
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